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High Risk Hotspot

Between 1994-1998: Volcano eruption in Rabaul, Cyclone
Justin in the Milne Bay (SE from map selection), and El
Niño-induced drought
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One Variable

In the univariate setting thresholding is straightforward...

..the separation of data into regular-valued and
extreme-valued portions.
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A Motivating Example
Thresholding Data

Multivariate Data

Taking multivariate q, say, we want to return the set T such that

T = {t |F (T > t) > c} (1)

Censor the data:

T ⊃ T∗ = {t | ti > c,∀i} (2)

And the output is:F for i = 1,2 is F (T ≤ t∗) = F1 + F2 − F1F2
and F1 = Pr(T ≤ t∗); F2 = F1 = Pr(T ≤ t | T > t∗)
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A Motivating Example
Thresholding Data

Multivariate Data

In the Multivariate setting this is to fit some contour that
partitions multivariate data into

Regular valued
Extreme valued
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Global Natural Disaster Risk Hotspots

Worldwide data has been gridded to 11
2
◦

boxes for 8 predictor
variables.

GDP
Population
Peak Ground Acceleration (PGA)
Floods
Cyclones
Drought
Volcanoes
Landslides
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2003 Global Natural Disaster Risk Hotspots Data

Incidence Maps, gridded to 1.5◦ lat-lon, 8 variables
Floods
Volcano
Drought
Earthquake
GNP: 1990 Gross National Product in US dollars
Population: Gridded population count (estimate) 1995
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Floods

.9 ptile of Flood counts
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Volcanos

‘.9′ ptile of Volcano incidence
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Droughts

Droughts: Classifying a drought.
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Droughts

50 pct Weighted Anomaly Standardized Precipitation (WASP)
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Droughts

75 pct Weighted Anomaly Standardized Precipitation (WASP)
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Droughts

Drought declaration vs. Drought classification
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Quakes

Peak Ground Acceleration
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Population

Population Density
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Income

GNP
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Select Bivariate Plots

PGA vs. Floods
PGA vs. Volcanoes
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Approaches to Thresholding

Multivariate Extreme Value Thresholding

We proceed as follows:
Select a thresholding level
Fit an extreme-valued parametric model to the data’s tail
Measure distance between the parametric model and an
empirical distribution function
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Parametric Model

Asymmetric Logistic Distribution (Tawn 1990):

FΘ(x1, . . . , xd) = exp

−∑
b∈B

∑
j∈b

(
θj,b

yj

)1/αb

αb


j ∈ {1, . . . ,d}, and yj is the transformed data
B = PowerSet{1, . . . ,d} \ ∅. Hence, |B| = 2d − 1
Say, b = {2,4,7}, then the inner sum is over j = 2,4,7
αb ∈ (0,1] ∀ b ∈ B \ B1 are dependence parameters
θj,b are asymmetry parameters, with the constraint:∑

b∈B(j)
θj,b = 1 for j = 1, . . . ,d to force univariate margins

to be of the correct form. Here, B(j) = {b ∈ B : j ∈ b}.
|B(j)| = 2d−1.
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Conditional Representation

To derive the pdf, we make use of the positive stable (PS)
distribution and its Laplace transform (Stephenson 2009):∫∞

0 h1(s)exp(−st)ds = exp(−tα)
Take Sb ∼ PS(αb) ∀ b ∈ B \ B1, and S = {Sb | b ∈ B \ B1}.
Then we have for j = 1, . . . ,d :

Pr(Xj < xj | S = s) = exp

− ∑
b∈B(j)

sb

(
θj,b

yj

)1/αb


while X1, . . . ,Xd are conditionally independent given S = s
Thus, each marginal asymmetric logistic pdf can be given
by:

fj(xj |s) = σ−1
j y−xij

j

 ∑
b∈B(j)

(zj,b/αb)

exp

− ∑
b∈B(j)

zj ,b


where zj,b = sb(θj,b/yj)

1/αb
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Parameter Estimation

We begin by estimating the marginal parameters
(µj , σj , and ξj ) from univariate data and keep them fixed
throughout.
Simplifying assumptions: we consider high-dimensional (5
and more) asymmetry parameters to be trivial; also, we
assume a non-informative prior.
To obtain estimates for α and θ, we use
Metropolis-Hastings within Gibbs to calculate conditional
posterior means.
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Thresholding

To select the best threshold, we minimize distances between
our parametric fit Fθ̂ and the empirical distribution function F̂n –
which is given by:

F̂n(t1, . . . , td) =
1

nk

d∑
j=1

n∑
i=1

1{xij < tj}
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Pickands Type

Pickands suggesting minimizing KS distance

dk = supq|F̂n(t)− F̂θ(t)|

with k = 1,2, ...[n/4]

Lupton, Abayomi, Lacer MEV Thresholding



Introduction and Motivation
Data

Methodology
Results

Approaches to Thresholding

Joe Type

Joe suggests computing measure of association and setting
cutoff to maximize tail dependence

maxk τ1−k/n = max τ(t|t > Ck )

= maxk 4E [Cθ(t|t > Ck )]− 1

[Joe 1992]
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Generalization of Joe Type

Maximum likelihood over minimum distance:

maxθ mink dθ(q,Ck ,θ)

= maxθ mink E [ln(
dGθ(q)

dGθ(Ck )
)]
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Kendall’s Tau on tails

τ1−k/n τ.9 τ.95 τ.99
Pop-Pga .072 .186 .472
GNP-Flood .113 .270 .326
GNP-Drought .208 .290 .168
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85-percentile

Lupton, Abayomi, Lacer MEV Thresholding



Introduction and Motivation
Data

Methodology
Results

90-percentile

Lupton, Abayomi, Lacer MEV Thresholding



Introduction and Motivation
Data

Methodology
Results
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Summary

We fit a flexible model to high-dimensional data.
This framework allows for the identification of multivariate
extremes via either

L1 or Pickands distance
Kullback-Liebler or Expected Entropic Distance.
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Summary

The method (on data ending in 2003) identified several,
post hoc, locations→ Haiti.
Compare thresholded ‘hotspots’ with disaster record from
2003-2010.
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