A Friendly Amendment of the Theil Index INFORMS October 2009

Kobi Abayomi¹ William Darity Jr.²

¹Asst. Professor Industrial Engineering - Statistics Group Georgia Institute of Technology

> ²Department of Public Policy Duke University and Department of Economics University of North Carolina

> > October 2009

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theil's Index, a version of Shannon's Entropy, is introduced in econometrics as a measure for inequality. It is improperly specified for statistical use. We explore an adjustment of the Theil index by considering...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Shannon's original Axiomatization

- Theil's (Mis)-Specification via Shannon
- Adjustment and Re-Specification

Theil's Index, a version of Shannon's Entropy, is introduced in econometrics as a measure for inequality. It is improperly specified for statistical use. We explore an adjustment of the Theil index by considering...

- Shannon's original Axiomatization
- Theil's (Mis)-Specification via Shannon
- Adjustment and Re-Specification

Theil's Index, a version of Shannon's Entropy, is introduced in econometrics as a measure for inequality. It is improperly specified for statistical use. We explore an adjustment of the Theil index by considering...

- Shannon's original Axiomatization
- Theil's (Mis)-Specification via Shannon
- Adjustment and Re-Specification

-Introduction

Outline

Introduction Shannon's Measure Axioms Shannon's Entropy Antecedents

Theil's Index Specification? Mis-specification

Possible Friendly Re-Specification for Theil's Index

(ロ) (同) (三) (三) (三) (三) (○) (○)

Resolution

- Shannon's Measure Axioms

Shannon's Axioms

Shannon represents an 'Information Source' - a random process on a discrete space - as a Markov process. He supposes a "measure" *H* should have these qualities:

- H should be continuous in p_i
- For $p_i = p, \forall i$, H should monotonically increase
- "If a choice be broken down, the original [H] should be the weighted sum"

-Shannon's Measure Axioms

Shannon's Axioms

Shannon represents an 'Information Source' - a random process on a discrete space - as a Markov process. He supposes a "measure" *H* should have these qualities:

- H should be continuous in p_i
- For $p_i = p, \forall i$, H should monotonically increase
- "If a choice be broken down, the original [H] should be the weighted sum"

-Shannon's Measure Axioms

Shannon's Axioms

Shannon represents an 'Information Source' - a random process on a discrete space - as a Markov process. He supposes a "measure" *H* should have these qualities:

- H should be continuous in p_i
- For $p_i = p, \forall i$, H should monotonically increase
- "If a choice be broken down, the original [H] should be the weighted sum"

Shannon's Measure Axioms

"If a choice be broken down" Consistency over conditioning...

$$H(p_1, p_2, p_3) \equiv H(p_1, p^*) + p^* H(p_2|p^*, p_3|p^*)$$

■▶ ■ のへの

- Introduction

Shannon's Entropy

Shannon's Theorem

The only *H* satisfying the three axioms is of the form (1949)

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

-Introduction

Antecedents

Other 'Entropies'

• Gibbs Entropy: $S = -k_B \sum p_i \log p_i$; (1872, 1878)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ von Neumann Entropy: $S - k_B Tr[\rho \log_e \rho]$

Antecedents

Other 'Entropies'

• Gibbs Entropy: $S = -k_B \sum p_i \log p_i$; (1872, 1878)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• von Neumann Entropy: $S - k_B Tr[\rho \log_e \rho]$

- Introduction

- Antecedents

Entropy's Career

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Statistics Frechet \rightarrow Ash \rightarrow Kullback \rightarrow Rissanen Humanities Theil: Econometrics

-Introduction

- Antecedents

Physics Electrical Engineering → Computing → Computer Science Statistics Frechet → Ash → Kullback → Rissanen Humanities Theil: Econometrics

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

-Introduction

- Antecedents

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

ntroduction Shannon's Measure Axioms Shannon's Entropy Antecedents

Theil's Index Specification? Mis-specification

Possible Friendly Re-Specification for Theil's Index

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Resolution

Theil's Version

A version of Theil's index is

$$T = n^{-1} \sum \frac{x_i}{n^{-1} \sum_j x_j} \log \frac{x_i}{n^{-1} \sum_j x_j}$$

The probability of a particular event/realization is replaced with the income share for a particular element.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Specification?

Theil's Decomposition

When collection of elements can be divided into *m* groups, $g_1, ..., g_m$ each with n_j elements (= individuals); $G = \bigcup g_j$, $g_j \cap g_j^* = \emptyset$, $\forall j \neq j^*$, $\sum_j n_j = n$.

$$T = \sum_{G} \frac{n_j}{n} \frac{n_j^{-1} \sum_{g_j} x_j}{n^{-1} \sum_{G} x_j} \log \frac{n_j^{-1} \sum_{g_j} x_j}{n^{-1} \sum_{G} x_j} +$$

$$\sum_{G} \frac{n_{j}^{-1} \sum_{g_{j}} x_{j}}{n^{-1} \sum_{G} x_{j}} \cdot n_{j}^{-1} \sum_{g_{j}} \frac{x_{j}}{n^{-1} \sum_{G} x_{j}} \log \frac{x_{j}}{n^{-1} \sum_{G} x_{j}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Theil's Index

Specification?

Illustration

500

- Specification?

Comments

- The probability of a particular event/realization is replaced with the income share for a particular individual.
- We were measuring prob mass of events, now we are measuring the 'size' of individual
- In this sense: The individual is the event, and the income share is the prob mass

- Specification?

Comments

- The probability of a particular event/realization is replaced with the income share for a particular individual.
- We were measuring prob mass of events, now we are measuring the 'size' of individual
- In this sense: The individual is the event, and the income share is the prob mass

- Specification?

Comments

- The probability of a particular event/realization is replaced with the income share for a particular individual.
- We were measuring prob mass of events, now we are measuring the 'size' of individual
- In this sense: The individual is the event, and the income share is the prob mass

Theil's Index

- Specification?

Comments

- The lack of a true event space (σ-algebra) yields a degenerate probability model...
- Though heuristic is consistent: n-dimensional simplex / Liouville family of distributions.
- But this belies a "deeper confusion" about Entropy and Probability [Jaynes (1965), American Journal of Physics].

-Theil's Index

- Specification?

Comments

- The lack of a true event space (σ-algebra) yields a degenerate probability model...
- Though heuristic is consistent: n-dimensional simplex / Liouville family of distributions.
- But this belies a "deeper confusion" about Entropy and Probability [Jaynes (1965), American Journal of Physics].

-Theil's Index

- Specification?

Comments

- The lack of a true event space (σ-algebra) yields a degenerate probability model...
- Though heuristic is consistent: n-dimensional simplex / Liouville family of distributions.
- But this belies a "deeper confusion" about Entropy and Probability [Jaynes (1965), American Journal of Physics].

-Theil's Index

-Specification?

Illustration

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Mis-specification

Shannon's Axiomatization

Notice:

$$T = log(n) - H$$

and that Shannon's original proof specified

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$

(日) (日) (日) (日) (日) (日) (日)

 Shannon's advice: K amounts to a choice of unit of measure (σ-algebra)

Shannon chose the binary log (base b = 2)

Mis-specification

Shannon's Axiomatization

Notice:

$$T = log(n) - H$$

and that Shannon's original proof specified

$$H = -K \sum_{i=1}^{n} p_i \log p_i$$

- Shannon's advice: K amounts to a choice of unit of measure (σ-algebra)
- Shannon chose the binary log (base b = 2)

Mis-specification

Skew-Sensitivity

One can arbitrarily choose partitions that guarantee across group sum dominates within groups sum. Merely choose a collection G^* such that $x_j > n_j^{-1} \sum_{g_j} x_j$ for groups $g_1, ..., g_{[n/m]}$.

On this collection

$$A \equiv \log \frac{n_j^{-1} \sum_{g_j} x_j}{n^{-1} \sum_G x_j} < \log \frac{x_j}{n^{-1} \sum_G x_j} \equiv B$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

obscuring within group effects.

L Theil's Index

Mis-specification

Illustration

Theilta	lk
---------	----

Mis-specification

Log base characterizes 'Granularity'

As well, there exist collections G^* for every choice of b such that on G^*/g^*

but

A, *B* < 1

▲□▶▲□▶▲□▶▲□▶ □ のQ@

on *g**

Mis-specification

The Amnesia of (Probability) Measure

- The problems don't arise on Shannon's specification via the unit simplex
- Theil Index is on simplex of arbitrary sum
- Theil Index is an ex parte function on probability measures

Theilta	lk
---------	----

-Mis-specification

The Amnesia of (Probability) Measure

- The problems don't arise on Shannon's specification via the unit simplex
- Theil Index is on simplex of arbitrary sum
- Theil Index is an *ex parte* function on probability measures

Theilta	lk
---------	----

-Mis-specification

The Amnesia of (Probability) Measure

- The problems don't arise on Shannon's specification via the unit simplex
- Theil Index is on simplex of arbitrary sum
- Theil Index is an *ex parte* function on probability measures

Possible Friendly Re-Specification for Theil's Index

Outline

Introduction

Shannon's Measure Axioms Shannon's Entropy Antecedents

Theil's Index

Specification? Mis-specification

Possible Friendly Re-Specification for Theil's Index

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Resolution

Possible Friendly Re-Specification for Theil's Index

Adjust *b* Rocke and Durbin Log-Linear hybridization; Box-Cox, Tukey families of transforms.

Rank Transform Estimate empirical CDF across and within groups and substitute for raw income shares

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Possible Friendly Re-Specification for Theil's Index

Adjust *b* Rocke and Durbin Log-Linear hybridization; Box-Cox, Tukey families of transforms. Rank Transform Estimate empirical CDF across and within groups and substitute for raw income shares

・ロト・西ト・山田・山田・山下

Outline

Introduction Shannon's Measure Axioms

Shannon's Entropy Antecedents

Theil's Index Specification? Mis-specification

Possible Friendly Re-Specification for Theil's Index

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Resolution

Groups of Equal Mean Uniform Discrete Random Variables

Groups of Equal Mean Uniform Discrete Random Variables

ヨー つへで

Groups of Equal Mean Uniform Discrete Random Variables, *b* is min.

