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Motivation

Repetitive Subscription Fraud
Telecommunications Industry

I Many people can’t pay their bills, yet they still want telephone
service.

GOAL: Catch people who are taking part in fraudulent activities.



Motivation Continued

We observe a network with nodes representing phone users and edges
representing a phone call between two uses.

Can you find the matching phone user?



Motivation Continued

The red nodes represent users who have the same call history.



Brief Background

Networks

I A network G = (V ,E) is a mathematical structure consisting of nodes V
and edges E .

I Often easier to consider a network based on an adjacency matrix,
A = [aij ]

n
i,j=1, where aij = 1 if an edge exists between nodes i and j and

aij = 0 if no such edge exists.

I The degree of node i , denoted di , is the number of edges connected to i .

A =


0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0


d4 = 3



Brief Background

Networks

I A network G = (V ,E) is a mathematical structure consisting of nodes V
and edges E .

I Often easier to consider a network based on an adjacency matrix,
A = [aij ]

n
i,j=1, where aij = 1 if an edge exists between nodes i and j and

aij = 0 if no such edge exists.

I The degree of node i , denoted di , is the number of edges connected to i .

A =


0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0


d4 = 3



Brief Background Continued

Erdös-Rényi Networks proposed in 1959

I Each edge is place independently with probability p

I Known not to represent reality very well

I Very well studied

Watts-Strogatz Small-World Networks proposed in 1998

I Begin with a circle of nodes with each node is connected to its k
neighbors on each side. Each edge is uniformly rewired with probability p.

I Incorporate high levels of clustering and short path length for p ∈ [.001, .1]

Barabási-Albert Scale-Free Networks proposed in 1999

I At each time step, a node enters the graph and connects to m nodes with
probabilities proportional to node degree.

I The distribution of the degree decays slowly with fd ∝ d−α for some
constant α.

I Attribute scale-free phenomena to preferential attach and network growth
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Erdös-Rényi Networks proposed in 1959

I Each edge is place independently with probability p

I Known not to represent reality very well

I Very well studied

Watts-Strogatz Small-World Networks proposed in 1998

I Begin with a circle of nodes with each node is connected to its k
neighbors on each side. Each edge is uniformly rewired with probability p.

I Incorporate high levels of clustering and short path length for p ∈ [.001, .1]

Barabási-Albert Scale-Free Networks proposed in 1999

I At each time step, a node enters the graph and connects to m nodes with
probabilities proportional to node degree.

I The distribution of the degree decays slowly with fd ∝ d−α for some
constant α.

I Attribute scale-free phenomena to preferential attach and network growth



Brief Background Continued
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Brief Background Continued

Plots of Erdös-Rényi, Watts-Strogatz, and Barabási-Albert networks



Brief Background Continued

Re-identification

I The signature of node i , denoted σ(i), is the entity in which the node
represents.

I As people interact with each other, they leave behind characteristic
patterns of (a likely unique) behavior.

I The re-identification problem is the process of identifying two nodes have
the same signature through this characteristic behavior.

Previous Work

I C. Cortes , D. Pregibon, and C. Volinsky. Computational Methods for
Dynamic Graphs. Journal of Computational and Graphical Statistics,
12:950–970, 2003.

I S. Hill , D. K. Agarwal , R. Bell, C. Volinsky. Building an effective
representation for dynamic networks. Journal of Computational and
Graphical Statistics, 15(3):584–608, 2006.

I S. Hill and A. Nagle. Social Network Signatures: A Random Graph
Approximation for Re-Identification and Experimental Results. In
Proceedings of Computational Aspects of Social Networks, pp. 23–33,
2009.
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Methodology

I Let G be an observed network from a family of networks Gθ, e.g.,
Erdös-Rényi, small world, or scale free networks, where θ is a
parameter that completely characterizes Gθ.

I Let A be the corresponding adjacency matrix of Gθ.

I The overlap score, i.e., the number of neighbors that nodes i and j
share is

Sθ(i , j) = 〈ai, aj〉,

where 〈·, ·〉 stands for the usual dot product and ai stands for the i th

row of A. When i 6= j , we call Sθ the non-match score.
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Methodology Continued

I Since the graph constructions are random, S(i , j) is a random
variable.

I Derive the distribution of S(i , j), denoted Fθ, based on the algorithm
in which the graph arises. In particular, S(i , j) ∼ Fθ.

I For i 6= j , calculate s(i , j). If this observed value is unusually large
based on Fθ, we conclude that the signatures (identities) of i and j
are the same.

I Formally, for all i 6= j , we perform the hypothesis test

H0 : σ(i) 6= σ(j) vs. H1 : σ(i) = σ(j).

I We address the multiple hypothesis testing problem via controlling
the false discovery rate (FDR).
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Score Distributions: Erdös-Rényi Networks

To derive the non-match score distribution for nodes i and j ,i 6= j , we
consider the construction of the network.

Construction

1. Start with network consisting of n nodes and 0 edges.

2. For each pair of nodes (i , j), i 6= j , place an edge between them with
probability p.

3. Once every pair of nodes is considered exactly once, the construction ends.



Score Distributions: Erdös-Rényi Networks Continued

Each scalar product in the score, i.e, dot product between two rows of A,
can be viewed as a Bernoulli trial.

Example

A =

26666664
0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0

37777775
s(1, 2) = 〈a1, a2〉

= (0, 1, 1, 0, 0, 0)(1, 0, 1, 0, 1, 0)T

= 0 · 1 + 1 · 0 + 1 · 1
+ 0 · 0 + 0 · 1 + 0 · 0
= 1

I The probability of success for each of these “trials” is

P {ai,i∗ · aj,i∗ = 1} = P {ai,i∗ = aj,i∗ = 1} = p2

I The non-match score distribution is, therefore,

Sp(i , j) ∼ Bin(n − 2, p2).
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Score Distributions: Erdös-Rényi Networks Continued

Plots of non-match score distributions for Erdös-Rényi networks with varying p.



Score Distributions: Watts-Strogatz Small-world Networks

To derive the non-match score distribution for nodes i and j ,i 6= j , we
consider the construction of the network.

Construction

1. Start with circle of n nodes each connected to its k closest nodes on the
left and right, giving a total of 2k edges for each node.

2. For each existing edge, decide to ”rewire” it with probability p.

I To rewire an edge, disconnect the edge from its right endpoint (node
that lies clockwise). Then select one node based on a uniform
distribution to reconnect to the right side of the edge to.

3. The algorithm ends when all original edges have been considered for
rewiring exactly once.



Score Distributions: Watts-Strogatz Small-world Networks Continued

−−−→
rewire



Score Distributions: Watts-Strogatz Small-world Networks Continued

To derive the non-match score distribution for nodes i and j ,i 6= j , we
need to consider three cases before rewiring.

1. nodes i and j are both unconnected to node i∗, i.e., ai,i∗ = aj,i∗ = 0;

2. node i and j are both connected to node i∗, i.e., ai,i∗ = aj,i∗ = 1;

3. node i is connected to node i∗ and node j is unconnected from i∗, i.e.,
ai,i∗ = 1, and aj,i∗ = 0.

Example

A =


0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 1
0 0 0 0 1 0


For i = 1 and j = 2:

1. case 1 occurs 2 times ;

2. case 2 occurs 1 time;

3. case 3 occurs 3 times.
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Score Distributions: Watts-Strogatz Small-world Networks Continued

The number of times each case occurs is:

n1 =

8>><>>:
n − 2k − ||i , j || − 1, if 1 ≤ ||i , j || ≤ k
n − 2k − ||i , j ||+ 1, if k < ||i , j || ≤ 2k
n − 4k, if ||i , j || > 2k
0, otherwise.

n2 =

8<:
2k − ||i , j || − 1, if 1 ≤ ||i , j || ≤ k
2k − ||i , j ||+ 1, if k < ||i , j || ≤ 2k
0, otherwise

n3 =

8>><>>:
2||i , j ||+ 2, if 1 ≤ ||i , j || ≤ k
2||i , j || − 2, if k < ||i , j || ≤ 2k
4k, if ||i , j || > 2k
0, otherwise.

Note, each ni depends on the distance between each pair of nodes before

rewiring. The distance between nodes i and j is denoted ||i , j ||.



Score Distributions: Watts-Strogatz Small-world Networks Continued

I As before, each scalar product in the score, can be viewed as a
Bernoulli trial were a success is defined by ai,i∗ · aj,i∗ = 1, or
ai,i∗ = aj,i∗ = 1

I We need to consider how a ”success” arises for each case in order to
derive the non-match score distribution.



Score Distributions: Watts-Strogatz Small-world Networks Continued

Case 1

After the rewiring process, aii∗ = 1 if

I one of the k edges considered for rewiring from node i is rewired to
node i∗

I one of the k edges considered for rewiring from node i∗ is rewired to
node i

The two cases combined can be described as a random variable
X ∼ Bin(2k, p/n).

P {ai,i∗ = 1} = P {X ≥ 1} = 1− P {X = 0} = 1− (1− p/n)2k

f1 ∼ Bin(n1, [1− (1− p/n)2k ]2)
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Score Distributions: Watts-Strogatz Small-world Networks Continued

Case 2

After the rewiring process, aii∗ = 0 if

I edge (i , i∗) is removed and not replaced while none of the 2k − 1
edges remaining for rewiring connect nodes i and i∗.

This event occurs with probability

P {ai,i∗ = 1} = 1− p(
n − 1

n
)(1− p/n)2k−1.

f2 ∼ Bin(n2, [1− p( n−1
n )(1− p/n)2k−1]2)
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Score Distributions: Watts-Strogatz Small-world Networks Continued

Case 3

After the rewiring process, aii∗ = 1 if the above two cases hold
appropriately. Therefore,

f3 ∼ Bin(n3, [1− p( n−1
n )(1− p/n)2k−1][1− (1− p/n)2k ])



Score Distributions: Watts-Strogatz Small-world Networks Continued

The non-match score distribution is the convolution of random variables
X1 ∼ f1,X2 ∼ f2, and X3 ∼ f3,i.e.,

P {Sθ(i , j) = z} =
z∑

y=0

(
n3

z − y

)
py−z

3 (1− p3)n3−(z−y)χ {z − y ≤ n3}

×
y∑

x=0

(
n1

x

)
px

1 (1− p1)n1−xχ {x ≤ n1}

×
(

n2

y − x

)
py−x

2 (1− p2)n2−(y−x)χ {y − x ≤ n2}



Score Distributions: Watts-Strogatz Networks Continued

Plots of non-match score distributions for Watts-Strogatz small-world networks



Score Distributions: Watts-Strogatz Networks Continued

I Typically, the graph will be unlabeled, however, the distributions we
derived depend on the labeling of the network through the distances
between nodes

I To get around needing the labels, we view the data as coming from
a mixture of all the non-match score distributions over all the
possible distances between nodes.
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Score Distributions: Watts-Strogatz Networks Continued

Mixture Model

I Consider s1, . . . , sbn/2c, where si denotes the non-match score
distribution for two nodes distance i apart.

I Let α1, . . . , αbn/2c ∈ R be the mixing parameters such that

0 ≤ αi ≤ 1 for all i and
∑bn/2c

i=1 αi = 1.

I The mixture distribution is

fmix =

bn/2c∑
i=1

αi s||·,·||=i .

I The αi ’s are actually known, so all we need to estimate is the
parameters p and k as before.

I For instance, if n is even, αi = 2
n−1

for i = 1, . . . , bn/2c − 1 and

αbn/2c = 1
n−1

.
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Score Distributions: Watts-Strogatz Networks Continued

Plots of non-match score mixture distribution for Watts-Strogatz

small-world networks



Score Distributions: Barabási-Albert Scale-free Networks

Barabási and Albert provide a method of constructing scale-free networks
based on growth and preferential attachment, however, their description
is imprecise. Bollobás and Riordan remedy this issue by precisely
specifying the model of Barabási and Albert.

Construction

1. Start with an initial graph with one vertex and one loop.

2. Let dn,i denote the degree of node i when the size of the graph is n. At
each time step add node n together with a single edge between nodes n
and i , where i is randomly chosen with

P(i = s) =


dn−1,s/(2n − 1), 1 ≤ s ≤ n − 1
1/(2n − 1), s = n.

3. Stop the algorithm once the desired number of nodes is reached.

This network can be generalized to add m edges with the entrance of
each new node.
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is imprecise. Bollobás and Riordan remedy this issue by precisely
specifying the model of Barabási and Albert.

Construction
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The two key elements of this construction are growth and preferential
attachment.

I Growth: nodes are added to the network over time.

I Preferential attachment: the probability that a new edge is attached
to a node is proportional to the nodes degree.
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Score Distributions: Barabási-Albert Scale-free Networks Continued

Preferential attachment introduces a dependence in the network which is
not present in the Erdös-Rényi or Watts-Strogatz networks. In particular,

P {ai,i∗ = aj,i∗ = 1} 6= P {ai,i∗ = 1}P {aj,i∗ = 1}

Moreover, we must consider the probabilities that nodes i and j are both
connected to node i∗ in the following cases:

1. i∗ < i < j

2. i < i∗ < j

3. i < j < i∗

We consider the case when m = 1, making the third case irrelevant.
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Score Distributions: Barabási-Albert Scale-free Networks Continued

We condition on networks at previous time periods to derive the following.

Case 1

P {ai∗ i = 1, ai∗j = 1} =
4i∗ + 2

(2j − 1)(4(i∗)2 − 1)

j−1Y
s=i+1

(
2s

2s − 1
)

=

„
4i∗ + 2

(2j − 1)(4(i∗)2 − 1)

«„
4j−i−1(j − 1)!2(2i)!

(2j − 2)!(i)!2

«
Case 2

P {ai∗ i = 1, ai∗j = 1} =
1

(2i∗)(2j − 1)

j−1Y
s=i

„
2s

2s − 1

«
=

1

(2i∗)(2j − 1)

„
4j−i (j − 1)!2(2i − 2)!

(2j − 2)!(i − 1)!2

«
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Score Distributions: Barabási-Albert Scale-free Networks Continued

I Let X i∗

i,j denote the Bernoulli random variable with success
probability

pi∗

i,j := P {ai∗i = 1, ai∗j = 1} ,

i.e., the random variable representing whether or not nodes i and j
are both connected to node i∗.

I The non-match score distribution for specified nodes i and j is the
convolution of random variables X i∗

i,j as i∗ ranges from 1 to n,i.e.,

Z =
∑j−1

i∗=1 X i∗
i,j .

Unlike the previous network constructions, these Bernoulli random
variables are dependent.
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Score Distributions: Barabási-Albert Scale-free Networks Continued

The dependence in the Bernoulli random variables is that the sum is
restricted to be one. Thus, Z is a Bernoulli random variable with
probability of a success

P {Z = 1} = E

"
j−1X

i∗=1

X i∗
i,j

#
=

j−1X
i∗=1

pi∗
i,j

The non-match score distribution for nodes i and j is

P {S1(i , j) = s} =

{
1−

∑j−1
i∗=1 pi∗

i,j , if s = 0∑j−1
i∗=1 pi∗

i,j , if s = 1.
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Estimation

I Problems arise in parameter estimation for networks due to the
dependency in the data. For example, the likelihood of degrees is no
longer the product of the observed marginal degree distributions.

I Many types of parameter estimation in networks are derived from
the sampling scheme in which the data was collected.

I To get around this dependency and since we want the estimation to
be valid no matter the sampling scheme, we use method of moments
estimators.
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Estimation: Erdös-Rényi Networks

I A family of Erdös-Rényi networks with known order n, along with the
match and non-match scores distributions are completely characterized by
parameter p.

I Let E denote the total number of edges in the observed network.

I Since are
`

n
2

´
possible edges each placed independently with probability p

E[E] =
n(n − 1)

2
p.

I Therefore, a moments estimator of p is

p̂ =
2Eobs

n(n − 1)
,

where Eobs is the observed number of edges.
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Estimation: Watts-Strogatz Small-world Networks

I For known n, the parameters p and k completely characterize this
family of networks

I It was shown that E[d ] = 2k , where d is the average degree. Thus,

k̂ = d
2

I Estimating p is more complicated.
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Estimation: Watts-Strogatz Small-world Networks Continued

I Let ti denote the total number of triads centered at node i

I Let tfixed
i and tvar

i be the number of triads centered at i that always
exist and the number of triads centered at i that vary based on the
rewiring process, respectively.



Estimation: Watts-Strogatz Small-world Networks Continued

To calculate the expected value of tvar we consider the following.

I Let Xi be a random variable denoting the number of edges that are
connected to node i initially that are not rewired to a different edge,

⇒ Xi ∼ Bin(k , 1− p).

I Let Yi denote the number of edges that are not initially connected
to node i that are rewired to node i ,

⇒ Yi ∼ Bin ((n − 2)k, p/n) .
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Estimation: Watts-Strogatz Small-world Networks Continued

E[ti ] = E[tfixed
i ] + E[tvar

i ]

= E[tfixed
i ] +

kX
a=1

(n−2)kX
b=1

E[tvar
i |Xi = a,Yi = b]P[Xi = a,Yi = b]

= E[tfixed
i ] +

kX
a=1

(n−2)kX
b=1

E[tvar
i |Xi = a,Yi = b]P[Xi = a]P[Yi = b]

=
2k−1X
l=1

l +

0@ kX
a=1

(n−2)kX
b=1

(a + b)k +
a+b−1X

c=1

c

1AP[Xi = a]P[Yi = b]

=
k(k − 1)

2
+

0@ kX
a=1

(n−2)kX
b=1

(a + b)k +
(a + b)(a + b − 1)

2

1A
× P[Xi = a]P[Yi = b],



Estimation: Watts-Strogatz Small-world Networks Continued

The total expected number of triad, ttot =
Pn

i=1 ti = n · ti , is

E[ttot ] = n
k(k − 1)

2
+ n

0@ kX
a=1

(n−2)kX
b=1

(a + b)k +
(a + b)(a + b − 1)

2

1A
× P[Xi = a]P[Yi = b].

Replace E[ttot ] and k with d
2 with the observed number of total

triads, and solve numerically for p̂



Estimation: Barabási-Albert Scale-free Networks

I The scale-free model considered here has only one parameter to be
estimated, m.

I We only consider the case when m = 1, so no estimation is needed

I If we observe data and need to estimate m, contrary results arise.
There are at least two ways to estimate m:

1. taking m as the minimum degree;
2. using the total number of edges to find m.

I This complication in parameter estimating m stems from the highly
simplistic nature of the model.
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Hypothesis Testing

We use a methodology by Benjamini and Yekutieli discussed in:

The Control of the False Discovery Rate in Multiple Testing Under Dependency.

1. Calculate the p-values for each of the m tests giving p1, . . . , pm.

2. Order the p-values giving p(1), . . . , p(m).

3. Define k = max

{
i : p(i) ≤ i

m(
Pm

i=1 1/i)
q

}
, and reject H0

(1), . . . ,H
0
(k).

Theorem

The above procedure always controls the FDR at level less that or equal to m0
m

q,

where m0 is the number of true null hypothesis.



Hypothesis Testing

We use a methodology by Benjamini and Yekutieli discussed in:

The Control of the False Discovery Rate in Multiple Testing Under Dependency.

1. Calculate the p-values for each of the m tests giving p1, . . . , pm.

2. Order the p-values giving p(1), . . . , p(m).

3. Define k = max

{
i : p(i) ≤ i

m(
Pm

i=1 1/i)
q

}
, and reject H0

(1), . . . ,H
0
(k).

Theorem

The above procedure always controls the FDR at level less that or equal to m0
m

q,

where m0 is the number of true null hypothesis.



Hypothesis Testing

We use a methodology by Benjamini and Yekutieli discussed in:

The Control of the False Discovery Rate in Multiple Testing Under Dependency.

1. Calculate the p-values for each of the m tests giving p1, . . . , pm.

2. Order the p-values giving p(1), . . . , p(m).

3. Define k = max

{
i : p(i) ≤ i

m(
Pm

i=1 1/i)
q

}
, and reject H0

(1), . . . ,H
0
(k).

Theorem

The above procedure always controls the FDR at level less that or equal to m0
m

q,

where m0 is the number of true null hypothesis.



Hypothesis Testing

We use a methodology by Benjamini and Yekutieli discussed in:

The Control of the False Discovery Rate in Multiple Testing Under Dependency.

1. Calculate the p-values for each of the m tests giving p1, . . . , pm.

2. Order the p-values giving p(1), . . . , p(m).

3. Define k = max

{
i : p(i) ≤ i

m(
Pm

i=1 1/i)
q

}
, and reject H0

(1), . . . ,H
0
(k).

Theorem

The above procedure always controls the FDR at level less that or equal to m0
m

q,

where m0 is the number of true null hypothesis.



Hypothesis Testing

We use a methodology by Benjamini and Yekutieli discussed in:

The Control of the False Discovery Rate in Multiple Testing Under Dependency.

1. Calculate the p-values for each of the m tests giving p1, . . . , pm.

2. Order the p-values giving p(1), . . . , p(m).

3. Define k = max

{
i : p(i) ≤ i

m(
Pm

i=1 1/i)
q

}
, and reject H0

(1), . . . ,H
0
(k).

Theorem

The above procedure always controls the FDR at level less that or equal to m0
m

q,

where m0 is the number of true null hypothesis.



Simulation Results

Erdös-Rényi Networks

n = 1000, p = .2 FDR=0.00615; TPR=1

n = 1000, p = .5 FDR=0.00501; TPR=1

n = 1000, p = .8 FDR=0.00570; TPR=1

Watts-Strogatz Small-World Networks

n = 1000, k = 5, p = .001 FDR=0.00100; TPR=0.99996

n = 1000, k = 5, p = .01 FDR=0.00108; TPR=0.99894

n = 1000, k = 5, p = .1 FDR=0.00082; TPR=0.94882

Barabási-Albert Scale-free Networks

I For m = 1 this method has trouble identifying two nodes as the same.

I The problem arises since the degree of most of the nodes is just 1, which
is not a rare value for the overlap score.
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Erdös-Rényi Networks

n = 1000, p = .2 FDR=0.00615; TPR=1

n = 1000, p = .5 FDR=0.00501; TPR=1

n = 1000, p = .8 FDR=0.00570; TPR=1

Watts-Strogatz Small-World Networks

n = 1000, k = 5, p = .001 FDR=0.00100; TPR=0.99996

n = 1000, k = 5, p = .01 FDR=0.00108; TPR=0.99894

n = 1000, k = 5, p = .1 FDR=0.00082; TPR=0.94882

Barabási-Albert Scale-free Networks

I For m = 1 this method has trouble identifying two nodes as the same.

I The problem arises since the degree of most of the nodes is just 1, which
is not a rare value for the overlap score.



Simulation Results
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Conclusions and Future Work

I Contributions
I Our approach offers a general and effective framework to answer the

question, do two nodes represent the same identity.

I Using the overlap score, we can estimate re-identification
performance for a class of networks without performing pairwise
comparisons to build models, greatly reducing the complexity
compared to existent methods.

I Future Work
I Consider what happens when a complete network is not observed or

a person changes his or her behavior.
I Consider different measures of similarity and/or attributes associated

with each node.
I Determine theoretical properties of the estimators or likelihood based

methods for estimation and hypothesis testing.
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