Multivariate Extreme Value Thresholding (for Environmental Hazards)

K. Abayomi M. Lacer

¹Environmental Studies Program & Department of Mathematical Sciences Binghamton University ²ISYE. GaTech

Institute for Operations Research and Management Sciences, 2012

Outline

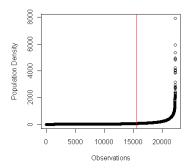
- Introduction and Motivation
 - A Motivating Example
 - A Simple Case
- Data and Methods
 - Data
 - Events
 - Vulnerabilities
 - Methodology
- Results

High Risk Hotspot

Between 1994-1998: Volcano eruption in Rabaul, Cyclone Justin in the Milne Bay (SE from map selection), and El Niño-induced drought

One Variable

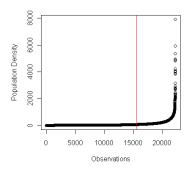
• In the simplest of cases, thresholding is straightforward.



 This will separate data into regular-valued and extreme-valued portions.

One Variable

• In the simplest of cases, thresholding is straightforward.



 This will separate data into regular-valued and extreme-valued portions.

Thresholding

Taking multivariate \mathbf{q} we want to return the set \mathcal{Q} such that

$$Q_c = \{q|F(\mathbf{Q} > \mathbf{q}) > 1 - c\} \tag{1}$$

The 'independent' approach is to censor the data:

$$Q \supset Q_* = \{\mathbf{q} \mid q_i > c, \forall i\}$$
 (2)

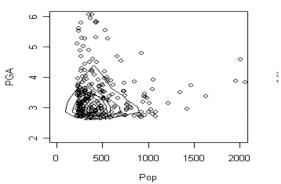
And the output is

$$\hat{F}(\mathbf{q}) = \mathbb{P}(\widehat{\mathbf{Q} \leq \mathbf{q}}) = \prod_{i=1}^{k} \mathbb{P}_{n}(Q_{i} \leq q_{i})$$

Multi Variable

But this doesn't yield a compact hull...

Density Plot

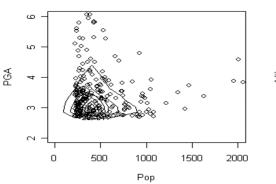


• ...if any subset of Q_c is non-monotone in the (real) F

Multi Variable

But this doesn't yield a compact hull...

Density Plot



• ...if any subset of Q_c is non-monotone in the (real) F

Global Natural Disaster Risk Hotspots

Worldwide data has been gridded to $1\frac{1}{2}^{\circ}$ boxes for 8 predictor variables.

- GDP
- Population
- Peak Ground Acceleration (PGA)
- Floods
- Cyclones
- Drought
- Volcanoes
- Landslides

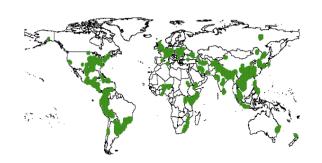
Global Natural Disaster Risk Hotspots

Worldwide data has been gridded to $1\frac{1}{2}^{\circ}$ boxes for 8 predictor variables.

- GDP
- Population
- Peak Ground Acceleration (PGA)
- Floods
- Cyclones
- Drought
- Volcanoes
- Landslides

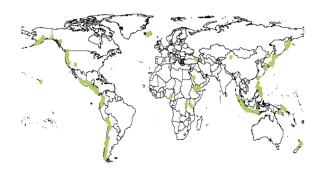
Floods

.9 ptile of Flood counts

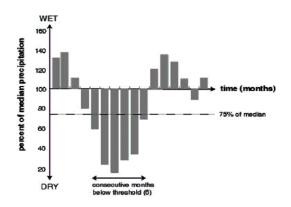


Volcanos

'.9' ptile of Volcano incidence

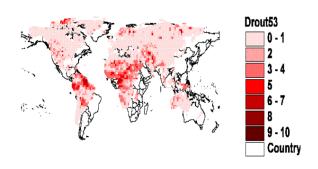


Droughts: Classifying a drought.

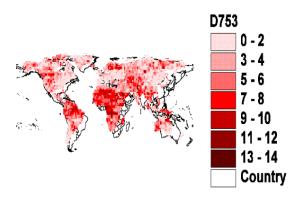


Example of a drought event defined by monthly precipitation being below a threshold of 75% of the long-term median value for at least 3 consecutive months. In this case, the duration of the event was 6 months.

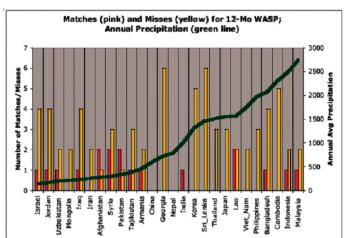
50 pct Weighted Anomaly Standardized Precipitation (WASP)



75 pct Weighted Anomaly Standardized Precipitation (WASP)

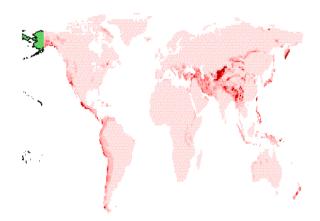


Drought declaration vs. Drought classification



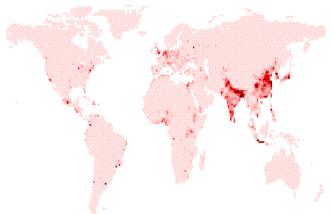
Quakes

Peak Ground Acceleration



Population

Population Density

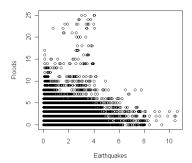


Income

GNP

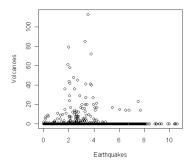
Select Bivariate Plots

PGA vs. Floods



Select Bivariate Plots

PGA vs. Volcanoes



- Select a thresholding level c
- Fit an extreme-valued (parametric) model to the data tail
- Measure a distance between the (parametric) model and an empirical distribution function

- Select a thresholding level c
- Fit an extreme-valued (parametric) model to the data tail
- Measure a distance between the (parametric) model and an empirical distribution function

- Select a thresholding level c
- Fit an extreme-valued (parametric) model to the data tail
- Measure a distance between the (parametric) model and an empirical distribution function

- Select a thresholding level c
- Fit an extreme-valued (parametric) model to the data tail
- Measure a distance between the (parametric) model and an empirical distribution function

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0,1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in \mathcal{B}_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $\mathcal{B}_{(j)} = \{b \in B : j \in b\}$.
- $|B_{(i)}| = 2^{d-1}.$

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0,1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in \mathcal{B}_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $\mathcal{B}_{(j)} = \{b \in B : j \in b\}$.
- $|B_{(i)}| = 2^{d-1}.$

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0,1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in \mathcal{B}_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $\mathcal{B}_{(j)} = \{b \in B : j \in b\}$.
- $|B_{(i)}| = 2^{d-1}.$

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0,1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in \mathcal{B}_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $\mathcal{B}_{(j)} = \{b \in B : j \in b\}$.
- $|B_{(i)}| = 2^{d-1}.$

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0, 1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in \mathcal{B}_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $\mathcal{B}_{(j)} = \{b \in B : j \in b\}$.
- $|B_{(i)}| = 2^{d-1}.$

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0, 1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in B_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $B_{(j)} = \{b \in B : j \in b\}$.

$$|B_{(j)}| = 2^{d-1}.$$

$$G(x_1,\ldots,x_d) = \exp\left[-\sum_{b\in B}\left[\sum_{j\in b}\left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]^{\alpha_b}\right]$$

- $j \in \{1, ..., d\}$, and y_j is the transformed data
- $B = \text{PowerSet}\{1, \dots, d\} \setminus \emptyset$. Hence, $|B| = 2^d 1$
- Say, $b = \{2, 4, 7\}$, then the inner sum is over j = 2, 4, 7
- $\alpha_b \in (0, 1] \ \forall \ b \in B \setminus B_1$ are dependence parameters
- $\theta_{j,b}$ are asymmetry parameters, with the constraint: $\sum_{b \in B_{(j)}} \theta_{j,b} = 1$ for $j = 1, \ldots, d$ to force univariate margins to be of the correct form. Here, $B_{(j)} = \{b \in B : j \in b\}$.
- $|B_{(i)}| = 2^{d-1}$.

To derive the pdf, we make use of the positive stable (PS) distribution and its Laplace transform (Stephenson 2009):

- $\int_0^\infty h_1(s) \exp(-st) ds = \exp(-t^\alpha)$
- Take $S_b \sim \mathsf{PS}(\alpha_b) \ \forall \ b \in \mathsf{B} \setminus \mathsf{B}_1$, and $\mathbf{S} = \{S_b \mid b \in \mathsf{B} \setminus \mathsf{B}_1\}$.
- Then we have for j = 1, ..., d:

$$\Pr(X_j < x_j \mid \mathbf{S} = \mathbf{s}) = \exp\left[-\sum_{b \in B_{(j)}} s_b \left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]$$

while X_1, \ldots, X_d are conditionally independent given S = s

 Thus, each marginal asymmetric logistic pdf can be given by:

$$f_j(x_j|s) = \sigma_j^{-1} y_j^{-x_{i_j}} \left[\sum_{b \in B_{(j)}} (z_{j,b}/\alpha_b) \right] \exp \left(-\sum_{b \in B_{(j)}} z_j, b \right)$$

To derive the pdf, we make use of the positive stable (PS) distribution and its Laplace transform (Stephenson 2009):

- $\int_0^\infty h_1(s) \exp(-st) ds = \exp(-t^\alpha)$
- Take $S_b \sim \mathsf{PS}(\alpha_b) \ \forall \ b \in \mathsf{B} \setminus \mathsf{B}_1$, and $\mathbf{S} = \{S_b \mid b \in \mathsf{B} \setminus \mathsf{B}_1\}$.
- Then we have for j = 1, ..., d:

$$\Pr(X_j < x_j \mid \mathbf{S} = \mathbf{s}) = \exp\left[-\sum_{b \in B_{(j)}} s_b \left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]$$

while X_1, \ldots, X_d are conditionally independent given $\mathbf{S} = \mathbf{s}$

 Thus, each marginal asymmetric logistic pdf can be given by:

$$f_j(x_j|s) = \sigma_j^{-1} y_j^{-x_{i_j}} \left[\sum_{b \in B_{(j)}} (z_{j,b}/\alpha_b) \right] \exp \left(-\sum_{b \in B_{(j)}} z_j, b \right)$$

Abayomi, Lacer

HELE Zih - Shlvih/Vil

To derive the pdf, we make use of the positive stable (PS) distribution and its Laplace transform (Stephenson 2009):

- Take $S_b \sim \mathsf{PS}(\alpha_b) \ \forall \ b \in \mathsf{B} \setminus \mathsf{B}_1$, and $\mathbf{S} = \{S_b \mid b \in \mathsf{B} \setminus \mathsf{B}_1\}$.
- Then we have for $j = 1, \ldots, d$:

$$\Pr(X_j < x_j \mid \mathbf{S} = \mathbf{s}) = \exp\left[-\sum_{b \in B_{(j)}} s_b \left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]$$

while X_1, \dots, X_d are conditionally independent given $\mathbf{S} = \mathbf{s}$

 Thus, each marginal asymmetric logistic pdf can be given by:

$$f_j(x_j|s) = \sigma_j^{-1} y_j^{-x_{i_j}} \left[\sum_{b \in B_{(j)}} (z_{j,b}/\alpha_b) \right] \exp \left(-\sum_{b \in B_{(j)}} z_j, b \right)$$

There $Z_{i,h} = S_h(\theta_{i,h}/V_i)^{1/\alpha_0}$

To derive the pdf, we make use of the positive stable (PS) distribution and its Laplace transform (Stephenson 2009):

- $\int_0^\infty h_1(s) \exp(-st) ds = \exp(-t^\alpha)$
- Take $S_b \sim \mathsf{PS}(\alpha_b) \ \forall \ b \in \mathsf{B} \setminus \mathsf{B}_1$, and $\mathbf{S} = \{S_b \mid b \in \mathsf{B} \setminus \mathsf{B}_1\}$.
- Then we have for $j = 1, \ldots, d$:

$$\Pr(X_j < x_j \mid \mathbf{S} = \mathbf{s}) = \exp\left[-\sum_{b \in B_{(j)}} s_b \left(\frac{\theta_{j,b}}{y_j}\right)^{1/\alpha_b}\right]$$

while X_1, \dots, X_d are conditionally independent given $\mathbf{S} = \mathbf{s}$

 Thus, each marginal asymmetric logistic pdf can be given by:

$$f_j(x_j|s) = \sigma_j^{-1} y_j^{-xi_j} \left[\sum_{b \in B_{(j)}} (z_{j,b}/\alpha_b) \right] \exp \left(-\sum_{b \in B_{(j)}} z_j, b \right)$$

where $z_{i,b} = s_b(\theta_{i,b}/v_i)^{1/\alpha_b}$

Parameter Estimation

- We begin by estimating the marginal parameters $(\mu_j, \sigma_j, \text{ and } \xi_j)$ from univariate data and keep them fixed throughout.
- Simplifying assumptions: we consider high-dimensional (5 and more) asymmetry parameters to be trivial; also, we assume a non-informative prior.
- To obtain estimates for α and θ , we use Metropolis-Hastings within Gibbs to calculate conditional posterior means.

Parameter Estimation

- We begin by estimating the marginal parameters $(\mu_j, \sigma_j, \text{ and } \xi_j)$ from univariate data and keep them fixed throughout.
- Simplifying assumptions: we consider high-dimensional (5 and more) asymmetry parameters to be trivial; also, we assume a non-informative prior.
- To obtain estimates for α and θ , we use Metropolis-Hastings within Gibbs to calculate conditional posterior means.

Parameter Estimation

- We begin by estimating the marginal parameters $(\mu_j, \sigma_j, \text{ and } \xi_j)$ from univariate data and keep them fixed throughout.
- Simplifying assumptions: we consider high-dimensional (5 and more) asymmetry parameters to be trivial; also, we assume a non-informative prior.
- To obtain estimates for α and θ , we use Metropolis-Hastings within Gibbs to calculate conditional posterior means.

Thresholding

To select the best threshold, we minimize distances between our parametric fit $G_{\hat{\theta}}$ and the empirical distribution function \hat{F}_n :

$$\hat{F}_n(t_1,\ldots,t_d) = \frac{1}{nk} \sum_{j=1}^d \sum_{i=1}^n \mathbf{1}\{x_{ij} < t_j\}$$

Thresholding

To select the best threshold, we minimize distances between our parametric fit $G_{\hat{\theta}}$ and the empirical distribution function \hat{F}_n :

$$\hat{F}_n(t_1,\ldots,t_d) = \frac{1}{nk} \sum_{i=1}^d \sum_{j=1}^n \mathbf{1}\{x_{ij} < t_j\}$$

Thresholding

To select the best threshold, we minimize distances between our parametric fit $G_{\hat{\theta}}$ and the empirical distribution function \hat{F}_n :

$$\hat{F}_n(t_1,\ldots,t_d) = \frac{1}{nk} \sum_{i=1}^d \sum_{j=1}^n \mathbf{1}\{x_{ij} < t_j\}$$

Pickands Type

Pickands suggesting minimizing KS distance

$$d_k = sup_{\mathbf{q}}|\hat{F}_n(\mathbf{q}) - \hat{G}_{\theta}(\mathbf{q})|$$

with
$$k = 1, 2, ...[n/4]$$

Joe Type

Joe suggests computing measure of association and setting cutoff to maximize tail dependence

$$max_k \ \tau_{1-k/n} = max \ \tau(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)$$

where \mathbf{C}_k is the (multivariate) kth cutoff...

...which (we show) is equivalent to

$$= max_k \ 4E[C_{ heta}(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)] - 1$$

where C_{θ} is the copula induced by G_{θ}

Joe Type

Joe suggests computing measure of association and setting cutoff to maximize tail dependence

$$max_k \ au_{1-k/n} = max \ au(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)$$

where \mathbf{C}_k is the (multivariate) kth cutoff... ...which (we show) is equivalent to

$$= max_k 4E[C_{\theta}(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)] - 1$$

where C_{θ} is the copula induced by G_{θ}

Joe Type

Joe suggests computing measure of association and setting cutoff to maximize tail dependence

$$max_k \ \tau_{1-k/n} = max \ \tau(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)$$

where \mathbf{C}_k is the (multivariate) kth cutoff... ...which (we show) is equivalent to

$$= max_k 4E[C_{\theta}(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)] - 1$$

where C_{θ} is the copula induced by G_{θ}

Our generalization of Joe Type

Which we can generalize, for a particular G_{θ} as a likelihood problem (in θ and k): $max_{\theta} min_{k} d_{\theta}(\mathbf{q}, \mathbf{C}_{k,\theta})$ is

$$\mathcal{L}_{(\theta,k)} = max_{\theta} \ min_{k} \ E[ln(rac{dG_{ heta}(\mathbf{q})}{dG_{ heta}(\mathbf{C}_{k})})]$$

Since the RHS is (essentially)

$$E_{G_{\theta}}[In(\mathbb{P}(\mathbf{q}\perp\!\!\!\perp\mathbf{C}_{k}))]$$

Kendall's Taus on tails

$ au_{1-k/n}$	$ au_{.9}$	$ au_{.95}$	$ au_{.99}$
Pop-Pga	.072	.186	.472
GNP-Flood	.113	.270	.326
GNP-Drought	.208	.290	.168

4) Q (

- For $dim(\mathbf{Q}) \geq 2$, d_k is distributionally unspecified
- However $\mathcal{L}_{(\theta,k)} \sim \chi^2_{\dim(\mathbf{Q})-1}$...
- ...to say nothing of the computational time to estimate G_{θ}

- For $dim(\mathbf{Q}) \geq 2$, d_k is distributionally unspecified
- However $\mathcal{L}_{(\theta,k)} \sim \chi^2_{\dim(\mathbf{Q})-1}$...
- ...to say nothing of the computational time to estimate G_{θ}

- For $dim(\mathbf{Q}) \geq 2$, d_k is distributionally unspecified
- However $\mathcal{L}_{(\theta,k)} \sim \chi^2_{\mathit{dim}(\mathbf{Q})-1}$...
- ...to say nothing of the computational time to estimate G_{θ}

- For $dim(\mathbf{Q}) \geq 2$, d_k is distributionally unspecified
- However $\mathcal{L}_{(\theta,k)} \sim \chi^2_{\mathit{dim}(\mathbf{Q})-1}$...
- ullet ...to say nothing of the computational time to estimate $G_{ heta}$

Since the extreme part of **Q** is distributed G_{θ}

it has Fisher Inf: $E[[\partial_{\theta}[dG_{\theta}(\mathbf{q})]]^2]$

$$J(\mathbf{Q}) = E[[\partial_{ heta}[dG_{ heta}(\mathbf{q})] - \partial_{ heta}[d\Phi_{ heta^*}(\mathbf{q})]]^2]$$

Since the extreme part of **Q** is distributed G_{θ} it has Fisher Inf: $E[[\partial_{\theta}[dG_{\theta}(\mathbf{q})]]^2]$

$$J(\mathbf{Q}) = E[[\partial_{ heta}[dG_{ heta}(\mathbf{q})] - \partial_{ heta}[d\Phi_{ heta^*}(\mathbf{q})]]^2]$$

Since the extreme part of **Q** is distributed G_{θ} it has Fisher Inf: $E[[\partial_{\theta}[dG_{\theta}(\mathbf{q})]]^2]$

$$J(\mathbf{Q}) = E[[\partial_{ heta}[dG_{ heta}(\mathbf{q})] - \partial_{ heta}[d\Phi_{ heta^*}(\mathbf{q})]]^2]$$

Since the extreme part of **Q** is distributed G_{θ} it has Fisher Inf: $E[[\partial_{\theta}[dG_{\theta}(\mathbf{q})]]^2]$

$$J(\mathbf{Q}) = E[[\partial_{\theta}[dG_{\theta}(\mathbf{q})] - \partial_{\theta}[d\Phi_{\theta^*}(\mathbf{q})]]^2]$$

which by linearity of the partial differential is

$$= E[[\partial_{\theta}[dG_{\theta}(\mathbf{q}) - d\Phi_{\theta^*}(\mathbf{q})]]^2]$$

and if we can find a $\Gamma = \Gamma(\theta, \theta^*)$ we can write

$$= E[[\partial_{ heta}[d[G_{\Gamma}(\mathbf{q}) - \Phi_{\Gamma}(\mathbf{q})]]]^2]$$

and, replacing \mathbf{q} with \mathbf{q}_k this is a version of the Fisher information of the extreme valued data under the Normal distributional assumption.

which by linearity of the partial differential is

$$= E[[\partial_{\theta}[dG_{\theta}(\mathbf{q}) - d\Phi_{\theta^*}(\mathbf{q})]]^2]$$

and if we can find a $\Gamma = \Gamma(\theta, \theta^*)$ we can write

$$= E[[\partial_{ heta}[d[G_{\!\Gamma}(\mathbf{q}) - \Phi_{\!\Gamma}(\mathbf{q})]]]^2]$$

and, replacing \mathbf{q} with \mathbf{q}_k this is a version of the Fisher information of the extreme valued data under the Normal distributional assumption.

which by linearity of the partial differential is

$$= E[[\partial_{\theta}[dG_{\theta}(\mathbf{q}) - d\Phi_{\theta^*}(\mathbf{q})]]^2]$$

and if we can find a $\Gamma = \Gamma(\theta, \theta^*)$ we can write

$$= E[[\partial_{\theta}[d[G_{\Gamma}(\mathbf{q}) - \Phi_{\Gamma}(\mathbf{q})]]]^{2}]$$

and, replacing \mathbf{q} with \mathbf{q}_k this is a version of the Fisher information of the extreme valued data under the Normal distributional assumption.

- We fit a flexible model to high-dimensional data.
- This framework allows for the identification of multivariate extremes via thresholding...
- ...for multivariate distances...
- ...one which can be expressed as likelihood via the copula approach, and another candidate as Fisher information.

- We fit a flexible model to high-dimensional data.
- This framework allows for the identification of multivariate extremes via thresholding...
- ...for multivariate distances...
- ...one which can be expressed as likelihood via the copula approach, and another candidate as Fisher information.

- We fit a flexible model to high-dimensional data.
- This framework allows for the identification of multivariate extremes via thresholding...
- ...for multivariate distances...
- ...one which can be expressed as likelihood via the copula approach, and another candidate as Fisher information.

- We fit a flexible model to high-dimensional data.
- This framework allows for the identification of multivariate extremes via thresholding...
- ...for multivariate distances...
- ...one which can be expressed as likelihood via the copula approach, and another candidate as Fisher information.

- The likelihood-copula distance method, on data ending in 2003, identified several, post hoc, locations. Significantly, Haiti.
- Compare thresholded 'hotspots' with disaster record from 2003-2012.

- The likelihood-copula distance method, on data ending in 2003, identified several, post hoc, locations. Significantly, Haiti.
- Compare thresholded 'hotspots' with disaster record from 2003-2012

- The likelihood-copula distance method, on data ending in 2003, identified several, post hoc, locations. Significantly, Haiti.
- Compare thresholded 'hotspots' with disaster record from 2003-2012.