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Summary

The main comments:

1. The extreme value limit of copulas is used to construct
parametric families of extreme value copulas.

2. Extreme value copulas with generalized extreme value
univariate margins are models for multivariate maxima.

3. Extreme value copulas with generalized extreme value
univariate survival margins are models for multivariate
minima.

4. Some (but not all!) families of extreme value copulas are
obtained as the extreme value limits of other families.
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Total Positivity

Joe calls a nonnegative function b Totally Positive of order 2 if
b(x1, x2)b(y1, y2) ≥ b(x1, y2)b(y1, x2), xi < yi . The multivariate
extension for X ∼ F

F (x ∨ y)F (x ∧ y) ≥ F (x)F (y)

Components matching (high-high,low-low).
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Min/Max infinitely divisible

With X ∼ F , F γ is generally a cdf for γ ≥ k − 1. If F γ is a cdf for
all γ > 0 then F is called Max-infinitely divisible.
To see: Say F is max-id then, F 1/n is a cdf and if
(X n

i1, ...X
n
im) ∼ F 1/n iid then

X ∼ (maxiX n
i1, ..., maxiX n

ik )

where the maxima are over the indices 1 to n. For min-id
replace max by min and cdf F by survival function F .
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MEVD are limit distributions

Given X ∼ F
Take the component-wise maxima,

X11 . . . X1k
. . . . .
. . . . .
. . . . .

Xn1 . . . Xnk
M1n . . . Mkn

Multivariate Extreme Value Distributions (MEVD) come from
the limits of the maxima: Mjn = max1≤i≤nXij .
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via univariate GEVDs

Set Zi = Min−ain
bin

and then set
G(z) = limn F n(a1n + b1nz1, ..., akn + bknzk )
to be the limiting distribution of the componentwise maxima,
then

= lim
n

P(M1n ≤ a1n + b1nz1, ..., Mkn ≤ akn + bknzk )

can be written in terms of univariate GEV margins, via Sklar’s
theorem

= C(Hγ1(z1), ..., Hγk (zk ))

if Hγ is the ordinary univariate GEV approximation (a la 3-types
theorem)



Multivariate Extreme Value Theory - Overview from Joe

Multivariate EVD Theory

MEVD copula

As it turns out, with uj = Hγ(zj) such that

Ct(u) = C(ut
1, ..., ut

k )

if C is an MEV copula, and if we let G = C(e−y1 , ..., e−yk ) be a
multivariate distribution with unit exponential (survival) margins
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MEVD copula

C(e−ty1 , ..., e−tyk ) = Ct(e−y1 , ..., e−yk )

then with A = −log(C(e−y1 , ..., e−yk )), G is a min/max stable
multivariate exponential distribution, in that if Xi ∼ Exp, then∧k

i=1
Xi
wi
∼ Exp.

As it turns out, min/max stable exponential distributions are
MVE distributions.



Multivariate Extreme Value Theory - Overview from Joe

Multivariate EVD Theory

Copulas on EVDs generate MEVDs

This yields

! A property of closure for min/max stable multivariate
exponential distribution under weighted minima/maxima,
analogous to the property of closure for under linear
combinations for multivariate normal — with the ∧
replacing the + operator.

! A way of picking generator functions, A = −logG where A
is homogenous of order 1: A(tx) = tA(x).
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Copulas on EVDs generate MEVDs

! A way to generate MEVDs using univariate
exponentials/GEVs [Y = 1

X ∼ e−y−1 is Frechet if X ∼ Exp]
(or survival functions) as argument since: min/max stable
multivariate exponential distributions generate MEV
copulas; MEVDs are min/max stable; the copula that
results does not depend on univariate margins.

! MEVD copulas are easily recognized from the min/max
stable representation being homogenous of order 1.
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Joe Copula

Starting with the Joe copula

Fδ(x , y) = C(u, v) = 1− ((1−u)δ +(1−v)δ− [(1−u)(1−v)]δ)δ

insert unit exponential unit survival margins. In the limit:

F n(x + logn, y + logn) ∼ [1− n−1(e−δx + e−δy )1/δ]n

→ e−(e−δx+e−δy )1/δ
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Gumbel/Logistic Copula

Generates the Gumbel Copula (replace the exponential survival
margins with general u, v or 1− u, 1− v (or (u,1-v), etc.):

Cδ(u, v) = e−((−logu)δ+(−logv)δ)1/δ

expressed in min-stable exponential form:

Aδ(z1, z2) = (zδ
1 + zδ

2)1/δ



Multivariate Extreme Value Theory - Overview from Joe

Example Parametric Family

Gumbel/Logistic Copula

The Gumbel copula is TP order 2 and in the so-called
Archimedean family, meaning:

Cδ(u, v) = ψδ(ψ
−1
δ (u) + ψ−1

δ (v))

with ψδ(s) = e−s1/δ .



Multivariate Extreme Value Theory - Overview from Joe

Example Parametric Family

Multivariate Generalization

This can be used for a straightforward extension to k = 3:

C(u1, u2, u3) = ψδ1(ψ
−1
δ1
◦ ψδ2(ψ

−1
δ2

(u1) + ψ−1
δ2

(u2)) + ψ−1
δ1

(u3))

with the constraint that δ1 ≤ δ2
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Multivariate Generalization

To extend to k = m dimensions, apply the k = 3 generalization
recursively, in terms of the min/max stable representation

A1,...,m(z; δ1, ..., δm) = ([A1,...,m−1(z1, ..., zm−1; δ1, ..., δm−1)]
δm+zδm

m )1/δm

with the constraint δ1 ≥ · · · ≥ δm.
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Comments

! Copulas which are easily generalizable may be restricted
in dependence: TP2, nested decreasing dependence in
marginal sets.

! Models for inference require densities - which may not be
straightforward (use symbolic computation).

! MEVD copula may be inferior for dependence of MEVD in
some settings (Smith comment re: Ledford, Tawn paper).
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