Thresholding MEVD-Multiple Environmental Hazard SAMSI 2007-2008

Kobi Abayomi ¹,²

¹Duke University SAMSI (then)

²Earth Institute Center for International Earth Science Information Network (CIESIN) Columbia University

> SAMSI Talk Dec 2007

Archetypal High Risk Hotspot

Outline

Archetypal High Risk Hotspot

Data

Events

Vulnerabilities

Thresholding

Next...approaches to Thresholding

- Archetypal High Risk Hotspot

Papua, New Guinea

Between 1994-1998: Volcano eruption in Rabaul, Cyclone Justin in the Milne Bay, and the El Nino-induced drought.

Outline

Archetypal High Risk Hotspot

Data

Events

Vulnerabilities

Thresholding

Next...approaches to Thresholding

Events

- Floods
- Volcano
- Drought
- Earthquake
- GNP: 1990 Gross National Product in US dollars
- Population: Gridded population count (estimate) 1995

Events

L Data

- ► Floods
- Volcano
- Drought
- Earthquake
- GNP: 1990 Gross National Product in US dollars
- Population: Gridded population count (estimate) 1995

- Data

Events

- Floods
- Volcano
- Drought
- Earthquake
- GNP: 1990 Gross National Product in US dollars
- ▶ Population: Gridded population count (estimate) 1995

L Data

Events

- Floods
- Volcano
- Drought
- Earthquake
- GNP: 1990 Gross National Product in US dollars
- Population: Gridded population count (estimate) 1995

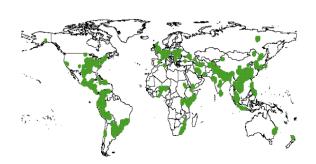
_ Data

Events

- Floods
- Volcano
- Drought
- Earthquake
- GNP: 1990 Gross National Product in US dollars
- Population: Gridded population count (estimate) 1995

_ Data

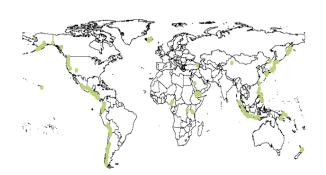
Events


- Floods
- Volcano
- Drought
- Earthquake
- GNP: 1990 Gross National Product in US dollars
- Population: Gridded population count (estimate) 1995

L Data

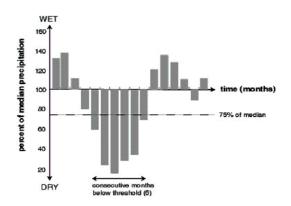
Events

Floods


.9 ptile of Flood counts

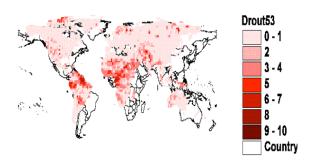
∟Data ∟_{Events}

Volcanos


'.9' ptile of Volcano incidence

LEvents

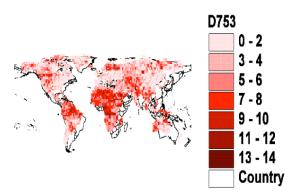
Droughts


Droughts: Classifying a drought.

Example of a drought event defined by monthly precipitation being below a threshold of 75% of the long-term median value for at least 3 consecutive months. In this case, the duration of the event was 6 months. −Data ∟_{Events}

Droughts

50 pct Weighted Anomaly Standardized Precipitation (WASP)

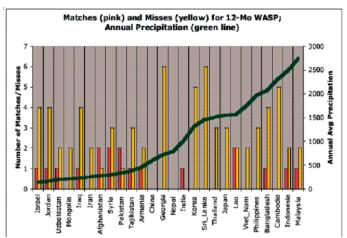


- Data

Events

Droughts

75 pct Weighted Anomaly Standardized Precipitation (WASP)

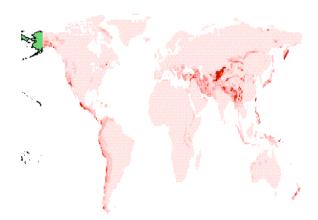


L_{Data}

L Events

Droughts

Drought declaration vs. Drought classification

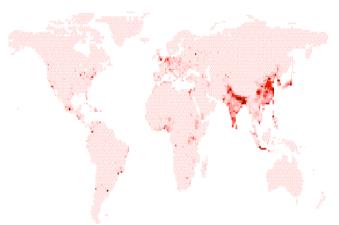


Data

L Events

Quakes

Peak Ground Acceleration



_ Data

└─ Vulnerabilities


Population

Population Density

└ Vulnerabilities

Income GNP

Outline

Archetypal High Risk Hotspot

Data

Events Vulnerabilities

Thresholding

Next...approaches to Thresholding

MEVD (Logistic type) Model

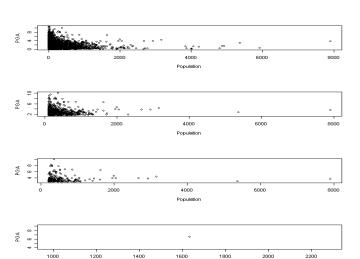
For i = 1, 2

$$G(q_1, q_2) = \exp\{-(y_1^{\frac{1}{\alpha}} + y_2^{\frac{1}{\alpha}})^{\alpha}\}$$
 (1)

where $\alpha \in [0,1]$ is a dependency parameter and $y_i = [1 + \frac{\xi_i(q_i - \mu_i)}{\sigma_i}]^{-\xi_i}$ — with (μ_i, σ_i, ξ_i) the location, scale, and shape parameters of the ith univariate distribution. [Stephenson 2003].

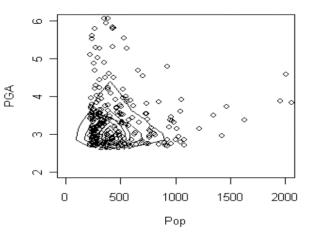
Taking multivariate \mathbf{q} we want to return the set \mathcal{Q} such that

$$Q = \{q | F(\mathbf{Q} > \mathbf{q}) > c\}$$
 (2)

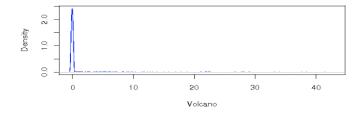

Censor the data:

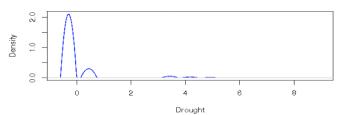
$$Q \supset Q_* = \{\mathbf{q} \mid q_i > c, \forall i\}$$
 (3)

And the output is:F for i=1,2 is $F(\mathbf{Q} \leq \mathbf{q}_*) = F_1 + F_2 - F_1 F_2$ and $F_1 = Pr(\mathbf{Q} \leq \mathbf{q}_*)$; $F_2 = F_1 = Pr(\mathbf{Q} \leq \mathbf{q} \mid \mathbf{Q} > \mathbf{q}_*)$

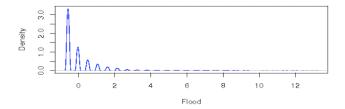

Pop vs. PGA

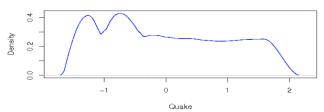
Censored below 0, and .8, .9, .99 ptiles

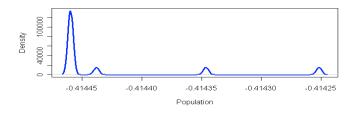


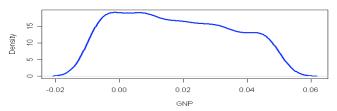

Pop vs. PGA

Density Plot




Volcano and Drought




Flood and Quake

Pop and GNP

Pickands Type

Pickands suggesting minimizing KS distance

$$d_k = sup_{\mathbf{q}} |\hat{G}_n(\mathbf{q}) - \hat{G}_{\theta}(\mathbf{q})|$$

with
$$k = 1, 2, ...[n/4]$$

Joe Type

Joe suggests computing measure of association and setting cutoff to maximize tail dependence

$$max_k \ \tau_{1-k/n} = max \ \tau(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)$$

= $max_k \ 4E[C_{\theta}(\mathbf{q}|\mathbf{q} > \mathbf{C}_k)] - 1$

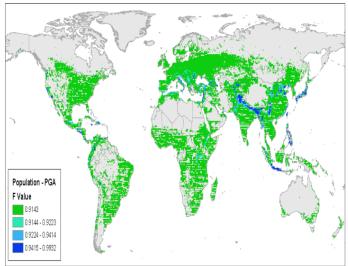
[Joe 1992]

Generalization of Joe Type

Maximum likelihood over minimum distance:

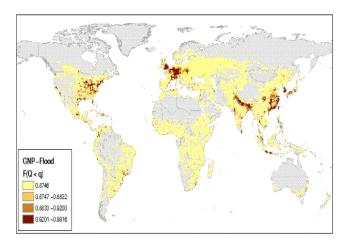
$$egin{aligned} & \textit{max}_{ heta} \; \textit{min}_{k} \; \textit{d}_{ heta}(\mathbf{q}, \mathbf{C}_{k, heta}) \ & = \textit{max}_{ heta} \; \textit{min}_{k} \; \textit{E}[\textit{In}(rac{dG_{ heta}(\mathbf{q})}{dG_{ heta}(\mathbf{C}_{k})})] \end{aligned}$$

__ Thresholding

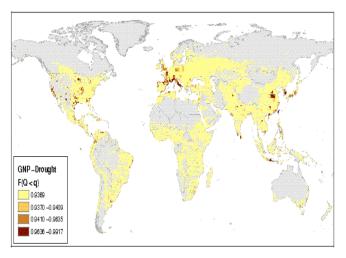

Next...approaches to Thresholding

Kendall's Tau on tails

$ au_{1-k/n}$	$ au_{.9}$	$ au_{.95}$	$ au_{.99}$
Pop-Pga	.072	.186	.472
GNP-Flood	.113	.270	.326
GNP-Drought	.208	.290	.168


Next...approaches to Thresholding

Pop-PGA


Next...approaches to Thresholding

GNP-Flood

Next...approaches to Thresholding

GNP-Drought

