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Motivation

Constrained Sum Data
Inequality as a Measurement

I Partition Inequality
I Group-wise
I Contribution-wise

I Statistically Specify Inequality
I As data
I From some ‘Random’ process
I for tests of significant differences

GOAL: Straightforward (Easy) Conditional/Groupwise Estimates of
Inequality, with Probability Intervals
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Just a little notation

Brief Notation

I y = (y1, ..., yN)← data, y some ’good’, i = 1, ...,N people, say.

I 1[yi≤y ] ← Indicator function. Say y = 5 and y1 = 3, y2 = 7 then
1[y1≤y ] = 1 but 1[y2≤y ] = 0

I
∑n

i=1 applei ← add up apples 1 through N.

I Empirical distribution function (ecdf)

F n
Y (y) =

n∑
i=1

1[yi≤y ] (1)

The ecdf in this context is just the proportion of people with a less or
equal amount y of the ‘good’
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US Income Data - ecdf
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Empirical Distribution (Function) on CPI-U-RS Money Income, 2008

Figure: Graph of empirical cumulative distribution function (ecdf) of Money
Income of Households — Consumer Price Index Research Series Using Current
Methods, CPI-U-RS



US Income Data - L-curve
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Figure: Illustration of L-curves calculated on US Census CPI-U-RS money
income in 2008.



US Income Data - Narrative

The median household net worth for white Americans is $113,149, and
for blacks it’s $5,677. That’s not a misprint or a misunderstanding;
the median white household is 20 times richer than the median

black household.

Figure: Powerful Words



Measuring Inequality

Essentially all functions of ecdf

‘Information’ based
Theil Index:

T = N−1
N∑
i=1

ri log ri =
m∑
j=1

πj rj logb rj +
m∑
j=1

πj rj Tj (2)

ri = yi/y ,
πj ← relative size of group j,
Tj ← fix group j.



Measuring Inequality

Essentially all functions of ecdf

‘Mean Absolute Deviation’
Gini Index:

G =

(
n
2

)−1
2

∑
i<j

|yi − yj | (3)



Measuring Inequality

I Theil often used for within vs. across inequality
I Misspecified function of ecdf
I Log base → across and within ‘partitions’ not directly comparable
I Range of index dependent upon total group size, partitioned group

sizes...
I ...there are ways to correct [2]

I Gini is popular but...
I ...not immediately apparent how to partition it, though
I desirably scaled between 0 and 1
I properly a function of ecdf
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Lorenz Curve

The beautiful Lorenz Curve

The Lorenz curve is just a list of population proportions — numbers
between 0 and 1 — joined to the list of ‘good’ proportions,

L(p) = (N · y)−1
bNpc∑
i=1

y(i) (4)

also numbers between 0 and 1.
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Just a little more notation

Brief Notation

I y ← the observed mean of the ‘good’

I y() = (y(1), ..., y(N))← the sorted list of ‘goods’

I F−1N (p)← the observed pth quantile, the quantity of the ‘good’ that
p% of the people have less than (or equal to).

I Lorenz Curve

L(p) = (N · x)−1
bNpc∑
i=1

F−1N (i/N) (5)

The Lorenz curve is just the sorted, cumulative list of ‘good’ shares by
population proportion.
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Lorenz → Gini

The Gini coefficient is a function of the Lorenz
curve...

G =
1
2 −

∑N
p=1/N

1
N L(p)

1/2
= 1− 2

1

N

N∑
p=1/N

L(p) (6)

...the scaled difference between the area under the observed Lorenz and
equality
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Lorenz → Gini
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Figure: Graph of empirical Lorenz curves on Money Income of Households —
Consumer Price Index Research Series Using Current Methods, CPI-U-RS.



Conditional Lorenz Curve

The trick is to see covariates as ‘conditional
information’

Aaberge et al [1] define pseudo-Lorenz regression curve as a function, in
the presence of covariates x for y , such that

E [Λ(p|x)] = L(p) (7)

e.g. that the conditional curves should ‘sum’ to
the original curve
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Conditional Lorenz Curve

This is just the law of iterated expectation...

for discrete, i.e. categorical, covariates, this is easy

L(p) =
m∑
j=1

πj Λ(p|x ∈ Cj) (8)

and setting

Λ(p|Cj) =
y j

y
· nj L(Fj(F

−1(p))|Cj) (9)

guarantees that the overall Lorenz curve will be
the weighted sum of conditional

‘pseudo’-Lorenz curves.
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Just a little more notation

More Brief Notation

I πj =
y j

y · nj ← the proportional size of group j

I p the proportion of the population

I F−1N (p)← the observed pth quantile of overall y

I Fj(F
−1(p))← the observed proportion of population in group j at

the pth quantile of the overall distribution

I L(Fj(F
−1(p))|Cj)← the Lorenz curve of group j on the observed

proportion of population in group j at the pth quantile of the overall
distribution

In Layman’s terms...
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Conditional Lorenz Curve

A simple algorithm

1. Sort all the data; Generate the pth quantiles of the unconditioned
distribution.→ FN ,F

−1(p)

2. Sort the data within each group; Generate the ecdf for each group
(conditional distribution) at the pth quantiles, of the original
distribution.→ Fj(F

−1(p))

3. Join the pth proportions for each group Fj with the cumulative
proportion of income at each group.→ L(Fj(F

−1(p))|Cj)

4. Compute the contribution to the overall Lorenz curve, at each pth

proportion.→ y j

y · nj L(Fj(F
−1(p))|Cj)
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Conditional Lorenz Curve

Example

Consider this data
g1<-c(1,5,5,1) g2<-c(3,3,3,3) g3<-c(1,1,1,9)

Sort all the data
sort(c(g1,g2,g3))

1 1 1 1 1 3 3 3 3 5 5 9
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Simple Example
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Conditional Lorenz Curve

Example

Illustrate the conditional lorenz curves for each group
lnew1<-lorenz(g1); lnew2<-lorenz(g2); lnew3<-lorenz(g3)

The function to compute the lorenz curve is sooooo easy
lorenz function(x)

y<-sort(x)

m<-mean(y); s<-sum(y)

l<-cumsum(y)/s

l
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Conditional Lorenz Curve

Example

Generally the ‘resolution’ can be set ‘arbitrarily’. (but it’s easy to set it at
fewest group)

> lresg [1] 4

And compute the multipliers for each of the groups
meanratiosg<-c(mg1,mg2,mg3)/mgall

[1] 0.6859177 0.8883197 5.2228916 0.8163842

groupsizesg<-c(4,4,4)/12 [1] 0.3333333 0.3333333 0.3333333
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Conditional Lorenz Curve

Example

Essentially the contribution to the overall lorenz curve is calculated
pointwise

for(pg in uppsg)

lpg<-c(lnew1[pg],lnew2[pg],lnew3[pg])

conditionallorenzedg[pg]<-

as.double(sum(meanratiosg*lpg*groupsizesg))

conditionallorenzedg

[1] 0.1388889 0.2777778 0.5277778 1.0000000

For instance at p = .50, the conditional lorenz curves are
[1] 0.1666667 0.5000000 0.1666667

And their contributions to the overall lorenz curve are
[1] 0.3333333 0.3333333 0.3333333
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Conditional Lorenz Curve

Example

And the Gini’s are easy to compute
ginioverall<-1-2*sum(conditionallorenzedg)/4

0.02777778
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Final (Important) Comments

Effect of group membership on overall
inequality

Like in Linear Regression we want effect of covariate (here cj) on
response (here Lorenz/Gini)

Mathematically this is

∂L(p)

∂C

∣∣∣∣
C=cj

[
m∑
j=1

πj
y j

y
· nj L(Fj(F

−1(p))|Cj)] (10)

But if we remember the definition of the derivative, and that the
categorical covariate is ‘singular’, this is just

L(p)

∣∣∣∣
C−j

− L(p)

∣∣∣∣
C

(11)

Just the difference between the overall (conditionally defined) lorenz
curve without and with the jth group.
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Final (Important) Comments

Statistical significance

We can test for statistical significance using exploiting the duality
between the Lorenz curve and the ecdf

since

FN(t) ∼ N(F (t),F (t)[1− F (t)]) (12)

Then

LN(p) ∼ N(L(p),
L(p)[1− L(p)]

N
) (13)

and we can use normal confidence bounds (pointwise), or at least the
Kolomorogov-Smirnov (KS) test for differences in distributions to test for
significant effects. See [3].

We must be careful not to confuse data with the abstractions
we use to analyze them.

-William James
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Figure: Graph 1.
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