Straightforward (yet Novel) Methodology for Inequality:
 Conditional Lorenz Curves
 Duke University
 Conference on Social Determinants of Health Disparities
 August 2011

Kobi Abayomi ${ }^{1}$
1: Asst. Professor, ISyE, Statistics Group, Georgia Institute of Technology

Motivation

Constrained Sum Data
Inequality as a Measurement

- Partition Inequality
- Group-wise
- Contribution-wise

Motivation

Constrained Sum Data

Inequality as a Measurement

- Partition Inequality
- Group-wise
- Contribution-wise
- Statistically Specify Inequality
- As data
- From some 'Random' process
- for tests of significant differences

GOAL: Straightforward (Easy) Conditional/Groupwise Estimates of Inequality, with Probability Intervals

Just a little notation

Brief Notation

Just a little notation

Brief Notation

- $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right) \leftarrow$ data, y some 'good', $i=1, \ldots, N$ people, say.

Just a little notation

Brief Notation

- $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right) \leftarrow$ data, y some 'good', $i=1, \ldots, N$ people, say.
$-\mathbb{1}_{\left[y_{i} \leq y\right]} \leftarrow$ Indicator function. Say $y=5$ and $y_{1}=3, y_{2}=7$ then $\mathbb{1}_{\left[y_{1} \leq y\right]}=1$ but $\mathbb{1}_{\left[y_{2} \leq y\right]}=0$

Just a little notation

Brief Notation

- $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right) \leftarrow$ data, y some 'good', $i=1, \ldots, N$ people, say.
- $\mathbb{1}_{\left[y_{i} \leq y\right]} \leftarrow$ Indicator function. Say $y=5$ and $y_{1}=3, y_{2}=7$ then $\mathbb{1}_{\left[y_{1} \leq y\right]}=1$ but $\mathbb{1}_{\left[y_{2} \leq y\right]}=0$
- $\sum_{i=1}^{n}$ apple $_{i} \leftarrow$ add up apples 1 through N.

Brief Notation

- $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right) \leftarrow$ data, y some 'good', $i=1, \ldots, N$ people, say.
$-\mathbb{1}_{\left[y_{i} \leq y\right]} \leftarrow$ Indicator function. Say $y=5$ and $y_{1}=3, y_{2}=7$ then $\mathbb{1}_{\left[y_{1} \leq y\right]}=1$ but $\mathbb{1}_{\left[y_{2} \leq y\right]}=0$
$-\sum_{i=1}^{n}$ apple $_{i} \leftarrow$ add up apples 1 through N.
- Empirical distribution function (ecdf)

$$
\begin{equation*}
F_{Y}^{n}(y)=\sum_{i=1}^{n} \mathbb{1}_{\left[y_{i} \leq y\right]} \tag{1}
\end{equation*}
$$

Brief Notation

- $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right) \leftarrow$ data, y some 'good', $i=1, \ldots, N$ people, say.
$-\mathbb{1}_{\left[y_{i} \leq y\right]} \leftarrow$ Indicator function. Say $y=5$ and $y_{1}=3, y_{2}=7$ then

$$
\mathbb{1}_{\left[y_{1} \leq y\right]}=1 \text { but } \mathbb{1}_{\left[y_{2} \leq y\right]}=0
$$

- $\sum_{i=1}^{n}$ apple $_{i} \leftarrow$ add up apples 1 through N.
- Empirical distribution function (ecdf)

$$
\begin{equation*}
F_{Y}^{n}(y)=\sum_{i=1}^{n} \mathbb{1}_{\left[y_{i} \leq y\right]} \tag{1}
\end{equation*}
$$

The ecdf in this context is just the proportion of people with a less or equal amount y of the 'good'

US Income Data - ecdf

Figure: Graph of empirical cumulative distribution function (ecdf) of Money Income of Households - Consumer Price Index Research Series Using Current Methods, CPI-U-RS

US Income Data - L-curve

L-Curves on *binned* CPI-U-RS Money Income, 2008

Figure: Illustration of L-curves calculated on US Census CPI-U-RS money income in 2008.

US Income Data - Narrative

The median household net worth for white Americans is $\$ 113,149$, and for blacks it's $\$ 5,677$. That's not a misprint or a misunderstanding; the median white household is 20 times richer than the median black household.

Figure: Powerful Words

Measuring Inequality

Essentially all functions of ecdf

'Information' based
Theil Index:

$$
\begin{equation*}
T=N^{-1} \sum_{i=1}^{N} r_{i} \log r_{i}=\sum_{j=1}^{m} \pi_{j} r_{j} \log _{b} r_{j}+\sum_{j=1}^{m} \pi_{j} r_{j} T_{j} \tag{2}
\end{equation*}
$$

$r_{i}=y_{i} / \bar{y}$,
$\pi_{j} \leftarrow$ relative size of group j,
$T_{j} \leftarrow$ fix group j .

Measuring Inequality

Essentially all functions of ecdf
'Mean Absolute Deviation'
Gini Index:

$$
\begin{equation*}
G=\frac{\binom{n}{2}^{-1}}{2} \sum_{i<j}\left|y_{i}-y_{j}\right| \tag{3}
\end{equation*}
$$

Measuring Inequality

Measuring Inequality

- Theil often used for within vs. across inequality

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf
- Log base \rightarrow across and within 'partitions' not directly comparable

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf
- Log base \rightarrow across and within 'partitions' not directly comparable
- Range of index dependent upon total group size, partitioned group sizes...

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf
- Log base \rightarrow across and within 'partitions' not directly comparable
- Range of index dependent upon total group size, partitioned group sizes...
- ...there are ways to correct [2]
- Gini is popular but...

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf
- Log base \rightarrow across and within 'partitions' not directly comparable
- Range of index dependent upon total group size, partitioned group sizes...
- ...there are ways to correct [2]
- Gini is popular but...
- ...not immediately apparent how to partition it, though

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf
- Log base \rightarrow across and within 'partitions' not directly comparable
- Range of index dependent upon total group size, partitioned group sizes...
- ...there are ways to correct [2]
- Gini is popular but...
- ...not immediately apparent how to partition it, though
- desirably scaled between 0 and 1

Measuring Inequality

- Theil often used for within vs. across inequality
- Misspecified function of ecdf
- Log base \rightarrow across and within 'partitions' not directly comparable
- Range of index dependent upon total group size, partitioned group sizes...
- ...there are ways to correct [2]
- Gini is popular but...
- ...not immediately apparent how to partition it, though
- desirably scaled between 0 and 1
- properly a function of ecdf

Lorenz Curve

The beautiful Lorenz Curve
The Lorenz curve is just a list of population proportions - numbers between 0 and 1 - joined to the list of 'good' proportions,

Lorenz Curve

The beautiful Lorenz Curve

The Lorenz curve is just a list of population proportions - numbers between 0 and 1 - joined to the list of 'good' proportions,

$$
\begin{equation*}
L(p)=(N \cdot \bar{y})^{-1} \sum_{i=1}^{\lfloor N p\rfloor} y_{(i)} \tag{4}
\end{equation*}
$$

Lorenz Curve

The beautiful Lorenz Curve

The Lorenz curve is just a list of population proportions - numbers between 0 and 1 - joined to the list of 'good' proportions,

$$
\begin{equation*}
L(p)=(N \cdot \bar{y})^{-1} \sum_{i=1}^{\lfloor N p\rfloor} y_{(i)} \tag{4}
\end{equation*}
$$

also numbers between 0 and 1 .

Just a little more notation

Brief Notation

Just a little more notation

Brief Notation

- $\bar{y} \leftarrow$ the observed mean of the 'good'

Just a little more notation

Brief Notation

- $\bar{y} \leftarrow$ the observed mean of the 'good'
- $\mathbf{y}_{()}=\left(y_{(1)}, \ldots, y_{(N)}\right) \leftarrow$ the sorted list of 'goods'

Brief Notation

- $\bar{y} \leftarrow$ the observed mean of the 'good'
- $\mathbf{y}_{()}=\left(y_{(1)}, \ldots, y_{(N)}\right) \leftarrow$ the sorted list of 'goods'
- $F_{N}^{-1}(p) \leftarrow$ the observed p th quantile, the quantity of the 'good' that $p \%$ of the people have less than (or equal to).

Brief Notation

- $\bar{y} \leftarrow$ the observed mean of the 'good'
- $\mathbf{y}_{()}=\left(y_{(1)}, \ldots, y_{(N)}\right) \leftarrow$ the sorted list of 'goods'
- $F_{N}^{-1}(p) \leftarrow$ the observed p th quantile, the quantity of the 'good' that $p \%$ of the people have less than (or equal to).
- Lorenz Curve

$$
\begin{equation*}
L(p)=(N \cdot \bar{x})^{-1} \sum_{i=1}^{\left\lfloor N_{p}\right\rfloor} F_{N}^{-1}(i / N) \tag{5}
\end{equation*}
$$

Brief Notation

- $\bar{y} \leftarrow$ the observed mean of the 'good'
- $\mathbf{y}_{()}=\left(y_{(1)}, \ldots, y_{(N)}\right) \leftarrow$ the sorted list of 'goods'
- $F_{N}^{-1}(p) \leftarrow$ the observed p th quantile, the quantity of the 'good' that $p \%$ of the people have less than (or equal to).
- Lorenz Curve

$$
\begin{equation*}
L(p)=(N \cdot \bar{x})^{-1} \sum_{i=1}^{\left\lfloor N_{p}\right\rfloor} F_{N}^{-1}(i / N) \tag{5}
\end{equation*}
$$

The Lorenz curve is just the sorted, cumulative list of 'good' shares by population proportion.

```
Lorenz }->\mathrm{ Gini
```

The Gini coefficient is a function of the Lorenz curve...

The Gini coefficient is a function of the Lorenz curve...

$$
\begin{equation*}
G=\frac{\frac{1}{2}-\sum_{p=1 / N}^{N} \frac{1}{N} L(p)}{1 / 2}=1-2 \frac{1}{N} \sum_{p=1 / N}^{N} L(p) \tag{6}
\end{equation*}
$$

The Gini coefficient is a function of the Lorenz curve...

$$
\begin{equation*}
G=\frac{\frac{1}{2}-\sum_{p=1 / N}^{N} \frac{1}{N} L(p)}{1 / 2}=1-2 \frac{1}{N} \sum_{p=1 / N}^{N} L(p) \tag{6}
\end{equation*}
$$

...the scaled difference between the area under the observed Lorenz and equality

Lorenz Curves on CPI-U-RS Money Income, 2008

Conditional Lorenz Curve

The trick is to see covariates as 'conditional information'
Aaberge et al [1] define pseudo-Lorenz regression curve as a function, in the presence of covariates \mathbf{x} for y, such that

$$
\begin{equation*}
E[\Lambda(p \mid \mathbf{x})]=L(p) \tag{7}
\end{equation*}
$$

Conditional Lorenz Curve

The trick is to see covariates as 'conditional information'
Aaberge et al [1] define pseudo-Lorenz regression curve as a function, in the presence of covariates \mathbf{x} for y, such that

$$
\begin{equation*}
E[\Lambda(p \mid \mathbf{x})]=L(p) \tag{7}
\end{equation*}
$$

e.g. that the conditional curves should 'sum' to the original curve

Conditional Lorenz Curve

This is just the law of iterated expectation...

Conditional Lorenz Curve

This is just the law of iterated expectation...
for discrete, i.e. categorical, covariates, this is easy

Conditional Lorenz Curve

This is just the law of iterated expectation...
for discrete, i.e. categorical, covariates, this is easy

$$
\begin{equation*}
L(p)=\sum_{j=1}^{m} \pi_{j} \Lambda\left(p \mid \mathbf{x} \in C_{j}\right) \tag{8}
\end{equation*}
$$

Conditional Lorenz Curve

This is just the law of iterated expectation...
for discrete, i.e. categorical, covariates, this is easy

$$
\begin{equation*}
L(p)=\sum_{j=1}^{m} \pi_{j} \Lambda\left(p \mid \mathbf{x} \in C_{j}\right) \tag{8}
\end{equation*}
$$

and setting

$$
\begin{equation*}
\Lambda\left(p \mid C_{j}\right)=\frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right) \tag{9}
\end{equation*}
$$

guarantees that the overall Lorenz curve will be the weighted sum of conditional 'pseudo'-Lorenz curves.

Just a little more notation

More Brief Notation

Just a little more notation

More Brief Notation

- $\pi_{j}=\frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} \leftarrow$ the proportional size of group j

Just a little more notation

More Brief Notation

- $\pi_{j}=\frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} \leftarrow$ the proportional size of group j
- p the proportion of the population

Just a little more notation

More Brief Notation

- $\pi_{j}=\frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} \leftarrow$ the proportional size of group j
- p the proportion of the population
- $F_{N}^{-1}(p) \leftarrow$ the observed $p t h$ quantile of overall \mathbf{y}

More Brief Notation

- $\pi_{j}=\frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} \leftarrow$ the proportional size of group j
- p the proportion of the population
- $F_{N}^{-1}(p) \leftarrow$ the observed pth quantile of overall \mathbf{y}
- $F_{j}\left(F^{-1}(p)\right) \leftarrow$ the observed proportion of population in group j at the pth quantile of the overall distribution

More Brief Notation

- $\pi_{j}=\frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} \leftarrow$ the proportional size of group j
- p the proportion of the population
- $F_{N}^{-1}(p) \leftarrow$ the observed pth quantile of overall \mathbf{y}
- $F_{j}\left(F^{-1}(p)\right) \leftarrow$ the observed proportion of population in group j at the pth quantile of the overall distribution
- $L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right) \leftarrow$ the Lorenz curve of group j on the observed proportion of population in group j at the pth quantile of the overall distribution

In Layman's terms...

Conditional Lorenz Curve

A simple algorithm

1. Sort all the data; Generate the pth quantiles of the unconditioned distribution. $\rightarrow F_{N}, F^{-1}(p)$

A simple algorithm

1. Sort all the data; Generate the pth quantiles of the unconditioned distribution. $\rightarrow F_{N}, F^{-1}(p)$
2. Sort the data within each group; Generate the ecdf for each group (conditional distribution) at the pth quantiles, of the original distribution. $\rightarrow F_{j}\left(F^{-1}(p)\right)$

A simple algorithm

1. Sort all the data; Generate the p th quantiles of the unconditioned distribution. $\rightarrow F_{N}, F^{-1}(p)$
2. Sort the data within each group; Generate the ecdf for each group (conditional distribution) at the pth quantiles, of the original distribution. $\rightarrow F_{j}\left(F^{-1}(p)\right)$
3. Join the pth proportions for each group F_{j} with the cumulative proportion of income at each group. $\rightarrow L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)$

A simple algorithm

1. Sort all the data; Generate the pth quantiles of the unconditioned distribution. $\rightarrow F_{N}, F^{-1}(p)$
2. Sort the data within each group; Generate the ecdf for each group (conditional distribution) at the pth quantiles, of the original distribution. $\rightarrow F_{j}\left(F^{-1}(p)\right)$
3. Join the pth proportions for each group F_{j} with the cumulative proportion of income at each group. $\rightarrow L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)$
4. Compute the contribution to the overall Lorenz curve, at each pth proportion. $\rightarrow \frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)$

A simple algorithm

1. Sort all the data; Generate the pth quantiles of the unconditioned distribution. $\rightarrow F_{N}, F^{-1}(p)$
2. Sort the data within each group; Generate the ecdf for each group (conditional distribution) at the pth quantiles, of the original distribution. $\rightarrow F_{j}\left(F^{-1}(p)\right)$
3. Join the pth proportions for each group F_{j} with the cumulative proportion of income at each group. $\rightarrow L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)$
4. Compute the contribution to the overall Lorenz curve, at each pth proportion. $\rightarrow \frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)$

Conditional Lorenz Curve

Example

Consider this data

$$
\mathrm{g} 1<-\mathrm{c}(1,5,5,1) \mathrm{g} 2<-c(3,3,3,3) \mathrm{g} 3<-c(1,1,1,9)
$$

Conditional Lorenz Curve

Example

Consider this data

```
g1<-c(1,5,5,1) g2<-c (3,3,3,3) g3<-c}(1,1,1,9
```

Sort all the data
$\operatorname{sort}(c(g 1, g 2, g 3))$

Conditional Lorenz Curve

Example

Consider this data

```
g1<-c(1,5,5,1) g2<-c(3,3,3,3) g3<-c}(1,1,1,9
```

Sort all the data
$\operatorname{sort}(c(g 1, g 2, g 3))$
111113333559

Simple Example

Conditional Lorenz Curve

Example

Illustrate the conditional lorenz curves for each group
lnew1<-lorenz(g1); lnew2<-lorenz(g2); lnew3<-lorenz(g3)

Conditional Lorenz Curve

Example

Illustrate the conditional lorenz curves for each group
lnew1<-lorenz(g1); lnew2<-lorenz(g2); lnew3<-lorenz(g3)
The function to compute the lorenz curve is sooooo easy

Example

Illustrate the conditional lorenz curves for each group
lnew1<-lorenz(g1); lnew2<-lorenz(g2); lnew3<-lorenz(g3)
The function to compute the lorenz curve is sooooo easy
lorenz function(x)
$y<-\operatorname{sort}(x)$
m<-mean(y); s<-sum(y)
l<-cumsum(y)/s
1

Simple Example

Conditional Lorenz Curve

Example

Generally the 'resolution' can be set 'arbitrarily'. (but it's easy to set it at fewest group)

Conditional Lorenz Curve

Example

Generally the 'resolution' can be set 'arbitrarily'. (but it's easy to set it at fewest group)
> lresg [1] 4

Conditional Lorenz Curve

Example

Generally the 'resolution' can be set 'arbitrarily'. (but it's easy to set it at fewest group)
> lresg [1] 4
And compute the multipliers for each of the groups

Example

Generally the 'resolution' can be set 'arbitrarily'. (but it's easy to set it at fewest group)
> lresg [1] 4
And compute the multipliers for each of the groups
meanratiosg<-c(mg1,mg2,mg3)/mgall
[1] 0.68591770 .88831975 .22289160 .8163842

Conditional Lorenz Curve

Example

Generally the 'resolution' can be set 'arbitrarily'. (but it's easy to set it at fewest group)
> lresg [1] 4
And compute the multipliers for each of the groups
meanratiosg<-c(mg1,mg2,mg3)/mgall
[1] 0.68591770 .88831975 .22289160 .8163842
groupsizesg<-c $(4,4,4) / 12$ [1] 0.33333330 .33333330 .3333333

Conditional Lorenz Curve

Example

Essentially the contribution to the overall lorenz curve is calculated pointwise

Example

Essentially the contribution to the overall lorenz curve is calculated pointwise

```
for(pg in uppsg)
```

lpg<-c (lnew1 [pg], lnew2 [pg], lnew3 [pg])
conditionallorenzedg[pg]<-
as.double(sum(meanratiosg*lpg*groupsizesg))
conditionallorenzedg
[1] 0.13888890 .27777780 .52777781 .0000000

Conditional Lorenz Curve

Example

Essentially the contribution to the overall lorenz curve is calculated pointwise
for (pg in uppsg)
lpg<-c (lnew1 [pg],lnew2 [pg] , lnew3 [pg])
conditionallorenzedg[pg]<-
as.double(sum(meanratiosg*lpg*groupsizesg))
conditionallorenzedg
[1] 0.13888890 .27777780 .52777781 .0000000
For instance at $p=.50$, the conditional lorenz curves are
[1] 0.16666670 .50000000 .1666667

Example

Essentially the contribution to the overall lorenz curve is calculated pointwise

```
for(pg in uppsg)
```

lpg<-c (lnew1 [pg], lnew2 [pg], lnew3 [pg])
conditionallorenzedg[pg]<-
as.double(sum(meanratiosg*lpg*groupsizesg))
conditionallorenzedg
[1] 0.13888890 .27777780 .52777781 .0000000

For instance at $p=.50$, the conditional lorenz curves are
[1] 0.16666670 .50000000 .1666667
And their contributions to the overall lorenz curve are [1] 0.33333330 .33333330 .3333333

Simple Example

Conditional Lorenz Curve

Example

And the Gini's are easy to compute ginioverall<-1-2*sum(conditionallorenzedg)/4

Conditional Lorenz Curve

Example

And the Gini's are easy to compute ginioverall<-1-2*sum(conditionallorenzedg)/4 0.02777778

Simple Example

Final (Important) Comments

Effect of group membership on overall inequality

Like in Linear Regression we want effect of covariate (here c_{j}) on response (here Lorenz/Gini)

Final (Important) Comments

Effect of group membership on overall inequality

Like in Linear Regression we want effect of covariate (here c_{j}) on response (here Lorenz/Gini)
Mathematically this is

$$
\begin{equation*}
\left.\frac{\partial L(p)}{\partial C}\right|_{C=c_{j}}\left[\sum_{j=1}^{m} \pi_{j} \frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)\right] \tag{10}
\end{equation*}
$$

Final (Important) Comments

Effect of group membership on overall inequality

Like in Linear Regression we want effect of covariate (here c_{j}) on response (here Lorenz/Gini)
Mathematically this is

$$
\begin{equation*}
\left.\frac{\partial L(p)}{\partial C}\right|_{C=c_{j}}\left[\sum_{j=1}^{m} \pi_{j} \frac{\bar{y}_{j}}{\bar{y}} \cdot n_{j} L\left(F_{j}\left(F^{-1}(p)\right) \mid C_{j}\right)\right] \tag{10}
\end{equation*}
$$

But if we remember the definition of the derivative, and that the categorical covariate is 'singular', this is just

$$
\begin{equation*}
\left.L(p)\right|_{C_{-j}}-\left.L(p)\right|_{C} \tag{11}
\end{equation*}
$$

Just the difference between the overall (conditionally defined) lorenz curve without and with the jth group.

Final (Important) Comments

Statistical significance
We can test for statistical significance using exploiting the duality between the Lorenz curve and the ecdf

Final (Important) Comments

Statistical significance

We can test for statistical significance using exploiting the duality between the Lorenz curve and the ecdf since

$$
\begin{equation*}
F_{N}(t) \sim N(F(t), F(t)[1-F(t)]) \tag{12}
\end{equation*}
$$

Final (Important) Comments

Statistical significance

We can test for statistical significance using exploiting the duality between the Lorenz curve and the ecdf since

$$
\begin{equation*}
F_{N}(t) \sim N(F(t), F(t)[1-F(t)]) \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
L_{N}(p) \sim N\left(L(p), \frac{L(p)[1-L(p)]}{N}\right) \tag{13}
\end{equation*}
$$

and we can use normal confidence bounds (pointwise), or at least the Kolomorogov-Smirnov (KS) test for differences in distributions to test for significant effects. See [3].

We must be careful not to confuse data with the abstractions we use to analyze them.
-William James

Actually Done

Curves Conditioned and Over all Fisheries, with Ginis, 1987-1990

Actually Done

Lorenz Curves for Quota Shares, All Fisheries, with Ginis

References I

娄
Rolf Aaberge, Steinar Bjerve, and Kjell Doksum.
Decomposition of rank-dependent measures of inequality by subgroups.
Metron - International Journal of Statistics, 63(3):493-503, 2005.
B
Kobi Abayomi and William Darity Jr.
A friendly amendment to the theil index.
Working paper, 2010.
嗇 Kobi Abayomi and Tracy Yandle.
A novel method of measuring consolidation, using conditional lorenz curves to examine itq consolidation in new zealand commercial fishing.
Marine Resources Research, 2011.

