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Copula Specification

Copula specification

A copula is a function that takes the ‘grades’ as arguments and
returns a joint distribution function, with marginals FX1 ,FX2 .

C(U,V ) = FX1,X2
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Copula Specification

Copula generation

Any multivariate distribution function can yield a copula
function.

FX1,X2(F−1
X1

(U),F−1
X2

(V )) = C
′
(U,V )
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Copula Specification

Heuristically speaking

The correspondence which assigns the value of the joint
distribution function to each ordered pair of values (FX1 ,FX2) for

each X1,X2 is a distribution function called a Copula.
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Heuristic Example

GPA - a copula based function
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Simple Example: Bivariate Distribution

Hθ(x , y) = 1− e−x − e−y + e−(x+y+θxy)

for x , y ∈ R+. H = 0 otherwise.
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Simple Example: Bivariate Distribution

H(−1)
X (u) = − ln (1− u); H(−1)

Y (v) = − ln (1− v)
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Simple Example: Bivariate Distribution

Cθ(u, v) = H(−ln(1− u),−ln(1− v)) =

= (u + v − 1) + (1− u)(1− v) ∗ e−θ ln(1−u) ln(1−v)

Notice if θ = 0

Cθ(u, v) = uv

...the independence copula.
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Bivariate Copula θ = 0,1,5
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Why use a Copula

Copulas are useful when modelling:

I Multivariate settings where a different family is needed for
each marginal distribution.

I Parametric estimates/versions of measures of association.
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The Copula perspective

Copulas dependent measures of association

Many measures of association can be expressed as solely
copula dependent. Kendalls’ Tau and, for example, Spearman’s
Rho with U = FX ,V = FY :

ρ(X ,Y ) = 12
∫ ∫

C(u, v)dudv − 3

ρ(U,V ) = 12E(C(u, v))− 3
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Mutual Information as Copula dependent function

Copula Density

With u = (FX1 , ...,FXk ), the copula density dC(u) is

dC(u) =
dFx(x)∏
dFxi (xi)
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Mutual Information as Copula dependent function

Mutual Information

It turns out the mutual information

MI(x) ≡
∫

Rk
dFXlog(

dFX∏
dFXi

)

is solely copula dependent...
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Mutual Information as Copula dependent function

Mutual Information is Copula based

Since, with u = (FX1 , ...,FXk )

MI(x) ≡
∫

Ik
dC(u)log(dC(u))

Thus the MI is a copula based measure of association.



CICA

Mutual Information as Copula dependent function

MI → KL → Independence

Mutual Information

I MI is often used as a proxy for independence in general
(i.e. non gaussian) settings.

I MI is the Kullback-Liebler divergence (’distance’) between
dependence and independence.

I MI= 0 implies independence.
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Independent Component Analysis

PCA as a special case

The PCA model

I Given multivariate data xk with scatter matrix Σ
PCA program: Find B such that y = Bx yields uncorrelated
yi and yj .
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Independent Component Analysis

PCA as a special case

The PCA model

Well known result: Singular Value Decomposition (SVD)

Σ = et Λe

Yielding:
yi = etx

with Cov(yi , yj) = 0, i 6= j .
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Independent Component Analysis

PCA as a special case

The PCA model - mixed data

I
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Independent Component Analysis

PCA as a special case

The PCA model - rotated data
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Independent Component Analysis

ICA as the generalization

Independent Component Analysis (ICA)

ICA is the PCA program under the more general assumption of
statistical independence

I Given xk

I ICA program: Find y = Bx such that yi = bix are
independent of yj = bjx.
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ICA as the generalization

Independent Component Analysis (ICA)

I In ICA: x = As — the observed data — are the mixed
outputs, B, of independent sources s.

I The y are the estimates (ŝ) of these independent
components, or signals.

I B is an estimate of A−1; B = ˆA−1.
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Independent Component Analysis

ICA as the generalization

The ICA model - illustration
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Independent Component Analysis

ICA as the generalization

Comments on ICA

I In both PCA and ICA the objective is the recovery of the
mixing A of the independent signals x. The difference is
the characterization of statistical independence.

I True statistical independence requires factorization of
probability densities.

I ICA procedures often use high order moments, or
empirical mutual information as independence proxies.

I Most are non-parametric approaches to estimating
statistical independence.
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ICA as the generalization

Copula Based Independent Component Analysis
(CICA)

General Approach
I Replace non-parametric measures of

dependence-independence with parametric copula families
I Appeal to the information theoretic ‘distance’ - K-L

divergence
I Exploit the role of the copula.
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CICA

Independent Component Analysis

ICA as the generalization

K-L divergence

The Kullback-Liebler divergence between two probability
density functions f (t) and g(t) is

K(f ,g) =

∫
t
f (t)log(

f (t)
g(t)

) (1)

I can (ab)use the notation K(w, z) for the divergence between
the distribution of two random vectors w and z. K ≥ 0 with
equality if and only if w and z have the same distribution.
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Independent Component Analysis

ICA as the generalization

Divergence decomposition
A classic property (Kullback [1968], others) of (1) is

K(y,s) = K(y,y∗) + K(y∗,s) (2)

with y∗ a random vector with independent entries and margins
distributed as y; s is an independent vector.
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Independent Component Analysis

ICA as the generalization

Divergence decomposition

I The LHS — K(y,s) — the divergence of the ICA outputs
(estimates) from the hypothesized inputs (sources).

I K(y,y∗) is the independence-dependence of the outputs
I K(y∗,s) is the mismatch of the margins of the estimates

from the margins of the sources.
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Independent Component Analysis

ICA as the generalization

L maximization implies KL minimization
Model x as generated from As = x.

I Log likelihood for n independent samples of x, under our
estimate q̂ of the true source distribution is:

LA = n−1
∑

log(q̂(A−1x))− log(|detA|)

I Which converges to∫
q(·)log(q̂(·)) + cst

.
I Which can be rewritten:∫

q(·)log(q(·))−
∫

q(·)log(
q(·)
q̂(·)

) = H(y)− K (q(·), q̂(·))
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Independent Component Analysis

ICA as the generalization

ML maximization implies KL minimization

= H(y)−K(y,s) = H(x)−K(y,s)

The RHS first term is the entropy of the inputs; the RHS second
term is the distance between (true) sources and their estimates.
ML maximization is equivalent to minimization of the KL
‘distance’ between the outputs and the sources.
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Independent Component Analysis

ICA as the generalization

Copula Based Independent Component Analysis
(CICA)

The procedure is to recast (2) via the copula:

I K(y,y∗) = MI(y) = −H(dC(u)) if u are the marginal
distribution functions ui = Fi(yi).

I K(y∗,s) =
∑

K(y∗i , si), since both y∗,s have independent
entries.
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Independent Component Analysis

ICA as the generalization

Copula Based Independent Component Analysis
(CICA)

Under fixed assumptions about the distribution of the sources, I
have to minimize two terms: the true objective, the mutual
information, expressed via the copula; the mismatch of the
marginal distributions to the assumed distributions.



CICA

Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Summary

To cast the K-L partitioning in terms of the copula I write the
independence term as

min
B

MI(y; B) = min
B

Eq(log(dCΘ(u)))

and the marginal fit term as

min
Θ

[CΘ(u)−
k∏

i=1

(ui)].

That is, I minimize the mutual information via the copula via
rotation B = Â−1 after minimizing the distance between
parametric copula and independent marginals.
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Overview

Setting u∗ = G(y∗) where y∗ is still a random, mutually
independent vector with margins distributed equivalently with y.
Thus, u∗ is independent with margins distributed as y.

K(û,u) = K(û,u∗) + K(u∗, û)

with û the estimate of the true sources output from a copula
based procedure and u the true distribution of the sources. The
K-L distance between the outputs and the sources is then: (1)
the fit of the outputs to independence K(û,u∗); and (2) the fit of
the marginals of the outputs to the true source distributions.
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Full Model

Minimizing the mutual information of the outputs... (with the
distributional assumption either fixed or parameterized) in the
copula representation:

min
B

MI(y; B) = min
B

Eq̂(log(dCΘ(u)))
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Full Model

...is equivalent to maximizing the score

∂L
∂B

= − ∂

∂B
K(q(·), q̂(·,B))

via the marginal distributions

∂L
∂B

= − ∂

∂B
K(û,u)

using the copula model.
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Full Model

The mixing matrix estimate B can be recovered via gradient
ascent/descent, for example.
Versions where the joint dependence is captured in a single
parameter (multivariate or scalar) may not be applicable for the
ICA problem. If Θ⊥ is the copula parameter at independence
then limΘ→Θ⊥ CΘ(u) =

∏k
i ui and the mixing matrix at Θ⊥ is

unidentifiable.
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Partite Model

Another approach is to set y = RWx, with W a ‘whitening’
matrix - the product of PCA - and R the ICA rotation. This
allows orthogonalization of a mutual information matrix via well
known procedures like Singular Value Decomposition.

I Construct scatter/kernel matrix
ΓCΘ

= ((Cθij (F̂
n
wi

T x(wiTx), F̂ n
wj

T x(wj
T x))))i,j=1..k

I Find orthogonalization of ΓCΘ
, λ1, ..., λk

I Yield yk = bkxk = rkwkxk with yi ⊥ yj via CΘ
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Copula Based Component Analysis - Partite Model

I Choose exchangeable families at each bivariate pair.
I Treat the univariate distributions ui = FXi (xi) as observed.
I Bivariate Mutual Information(s), or, E(log(dC(ui , vi))) are

the elements of ‘scatter’ matrix
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Partite Model

I For well fit Cθ̂ij
→ MI(Cθ̂ij

) ≥ 0 for all i , j . Thus

I R = ((MI(Cθ̂ij
))) is positive semi-definite, by

exchangeability.
I Singular Value Decomposition of R yields orthogonal basis

(w.r.t MI) [Tipping and Bishop 1999].
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - Partite Model

I Some ICA algorithms employ “arbitrary” non-linear
transforms (e.g. logistic [Bell and Sejnowski 1995],
log(cosh) [Teschendorf 2004]).

I Other algorithms use nonparametric estimates of MI
[Stogbauer 2004] or cumulant moments [Comon 1994].
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Independent Component Analysis

ICA as the generalization

Copula Based Component Analysis - following 3,
Comparisons

I Copula approach allows flexible choice of non-linear u.
I Parametric estimators of MI (O(n−1/2)) superior to

nonparametric version (O(n−4/5)).
I Parametric approach may be more stable on smaller

datasets and under moment perturbation [McCullagh
1994, Everson and Roberts 2000]; and on extreme value
distributions.
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Independent Component Analysis

ICA as the generalization

Example Results 1 - Extreme value distribution.
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Independent Component Analysis

ICA as the generalization

Example Results 1 - Rotated extreme value
distribution.
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Independent Component Analysis

ICA as the generalization

Example Results 1; Gumbel-Hougard (GH) type
copula - yi = Bixi
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Independent Component Analysis

ICA as the generalization

Example Results 2 - GH type dependency gradient.
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Independent Component Analysis

ICA as the generalization

Example Results 3 - CICA vs. fastICA
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Independent Component Analysis

ICA as the generalization

Sample Size Comparison, log(MISE) - CICA(GH) vs.
fastICA
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Partite Example

I Finding closed form MLE estimators is difficult for many
models.

I Balance between tractable MLE estimation and model
flexibility.
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Independent Component Analysis

ICA as the generalization

Two Parameter Archimedean Families

A copula family is called archimedean if the copula can be
written:

Cδ(u, v) = φδ(φ
−1
δ (u) + φ−1

δ (v))

with φδ a generating function parameterized by δ.
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Independent Component Analysis

ICA as the generalization

Two Parameter Archimedean Families

Then

Cθ,δ(u, v) = ηθ,δ(η
−1
θ,δ (u) + η−1

θ,δ (v))

with ηθ,δ(s) = ψθ(−logφδ(s)) is a natural two-parameter
extension
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Application: CICA on ESI

CICA on the 2002 Environmental Sustainability Index (ESI)

I A scaled linear combination of sixty-eight metrics of
environmental concern

I Traditional quantities (such as NOx and SO2
concentrations) are included with more expansive
measures of environmental sustainability -(such as civil
liberty and corruption)

I A measure of overall progress towards environmental
sustainability - designed to permit systematic and
quantitative comparison between nations



CICA

Independent Component Analysis

ICA as the generalization

Application: CICA on ESI

CICA on the 2002 Environmental Sustainability Index (ESI)

I A scaled linear combination of sixty-eight metrics of
environmental concern

I Traditional quantities (such as NOx and SO2
concentrations) are included with more expansive
measures of environmental sustainability -(such as civil
liberty and corruption)

I A measure of overall progress towards environmental
sustainability - designed to permit systematic and
quantitative comparison between nations



CICA

Independent Component Analysis

ICA as the generalization

Application: CICA on ESI

CICA on the 2002 Environmental Sustainability Index (ESI)

I A scaled linear combination of sixty-eight metrics of
environmental concern

I Traditional quantities (such as NOx and SO2
concentrations) are included with more expansive
measures of environmental sustainability -(such as civil
liberty and corruption)

I A measure of overall progress towards environmental
sustainability - designed to permit systematic and
quantitative comparison between nations



CICA

Independent Component Analysis
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ESI Grouping

Environmental Systems Natural stocks such as air, soil, and
water.

Environmental Stresses Stress on ecosystems such as
pollution and deforestation.

Vulnerability Basic needs such as health, nutrition, and
mortality.

Capacity Social and economic variables such as corruption
and liberty, energy consumption, and schooling
rate.
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Implementation

Additionally, I fit rotations of bivariate copula.
The copula are rotated by setting the argument equal to the
values in the table, with u = 1− u, v = 1− v :

Rotation (u, v)

0 (u, v)
90 (v ,u)
180 (v ,u)
270 (v ,u)
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Independent Component Analysis

Results

CICA loadings

Variable Name Component 1 Component 2 Component 3
SO2 1 33 54
NO2 2 24 42
TSP 3 16 33
ISO14 4 49 41
WATCAP 5 43 35
IUCN 6 23 25
CO2GDP 7 52 61
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Results

CICA loadings vs. PCA loadings

CICA PCA
SO2 NUKE
NO2 BODWAT
TSP TFR

ISO14 FSHCAT
WATCAP PESTHA

IUCN WATSUP
CO2GDP GRAFT
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