CAARMS Talk July 2008

Dr. Kobi Abayomi*

*Georgia Institute of Technology

July 27, 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

1. Part I - Introduction and History.

2. Part II - Welfare Economics, Sustainable Criteria.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3. Part III - Statistics.

- 1. Part I Introduction and History.
- 2. Part II Welfare Economics, Sustainable Criteria.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3. Part III - Statistics.

- 1. Part I Introduction and History.
- 2. Part II Welfare Economics, Sustainable Criteria.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3. Part III - Statistics.

Part I

Introduction and History

Antecedents of Sustainability

What is Sustainability?

Various definitions from various authors and settings.

- Generally a process characterization.
- To reform Emery's prurient simile: Sustainability is hard to define but obvious when it is absent.

Antecedents of Sustainability

What is Sustainability?

- Various definitions from various authors and settings.
- Generally a process characterization.
- To reform Emery's prurient simile: Sustainability is hard to define but obvious when it is absent.

-Antecedents of Sustainability

What is Sustainability?

- Various definitions from various authors and settings.
- Generally a process characterization.
- To reform Emery's prurient simile: Sustainability is hard to define but obvious when it is absent.

-Antecedents of Sustainability

History of 'Sustainability'

Thomas Malthus' *An Essay on the Principle of Population* (1798-1826 six editions)

"Of Increasing Wealth, as it affects the Condition of the Poor"

Antecedents of Sustainability

History of 'Sustainability'

Frank Ramsey's A Mathematical Theory of Saving (1928)

"[interest on wealth] is ethically indefensible...polite expression for rapacity..."

History of 'Sustainability'

Harold Hotelling's *The Economics of Exhaustible Resources* (1931)

"Problems of exhaustible assets are peculiarly liable to become entangled with the infinite."

Antecedents of Sustainability

History of 'Sustainability'

John Rawls' Theory of Justice (1972)

"Just society is one so organized as to promote the greatest...well being of least well off."

Implicit Concern for [intergenerational] social welfare

- Explicit worry about consumption
- Beginnings of mathematical formalism, but...
- ...mostly 'theological' and narrative.
- Trade-off between wealth [consumption] and sustainability.

- Implicit Concern for [intergenerational] social welfare
- Explicit worry about consumption
- Beginnings of mathematical formalism, but...
- ...mostly 'theological' and narrative.
- Trade-off between wealth [consumption] and sustainability.

- Implicit Concern for [intergenerational] social welfare
- Explicit worry about consumption
- Beginnings of mathematical formalism, but...
- ...mostly 'theological' and narrative.
- ► Trade-off between wealth [consumption] and sustainability.

Early Themes

- Implicit Concern for [intergenerational] social welfare
- Explicit worry about consumption
- Beginnings of mathematical formalism, but...
- ...mostly 'theological' and narrative.
- ► Trade-off between wealth [consumption] and sustainability.

Early Themes

- Implicit Concern for [intergenerational] social welfare
- Explicit worry about consumption
- Beginnings of mathematical formalism, but...
- ...mostly 'theological' and narrative.
- Trade-off between wealth [consumption] and sustainability.

- Defining Sustainability

Working Definition

A **Sustainable** process: One that can be maintained at a certain level indefinitely.

Sustainable Development: Development of economic systems that can last indefinitely.

Bruntland Commission (1983): "Meets the needs of the present without compromising the ability of future generations to meet their own needs."

Defining Sustainability

An Aside: The ESI

ESI 2002

Environmental Sustainability Index 2002

Part II

A Sustainable Criteria

Mathematical Formalism: Welfare Economics

A simple setup, let:

- c_t the consumption of some resource at time t
- \triangleright *s*⁰ initial stock of resource.
- ► $u(c_t)$ an increasing, strictly concave function ($\dot{u} > 0$, $\ddot{u} < 0$).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Mathematical Formalism: Welfare Economics

A simple setup, let:

- c_t the consumption of some resource at time t
- s_0 initial stock of resource.
- ► $u(c_t)$ an increasing, strictly concave function ($\dot{u} > 0$, $\ddot{u} < 0$).

(ロ) (同) (三) (三) (三) (○) (○)

Mathematical Formalism: Welfare Economics

A simple setup, let:

- c_t the consumption of some resource at time t
- s_0 initial stock of resource.
- $u(c_t)$ an increasing, strictly concave function ($\dot{u} > 0$, $\ddot{u} < 0$).

Welfare Economics

The goal under Hotelling's version of **discounted utilitarianism** (1931) is to:

$$max \ W(u) = max \int_0^\infty u(c_t) e^{\delta t} dt$$

s.t.

$$\int_0^\infty c_t \leq s_0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Welfare Economics

Welfare Economics

Write:

$$egin{aligned} m{s}_t &= m{s}_0 - \int_0^t m{c}_f df \ m{s}_t &\geq 0 \ orall \ t \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Welfare Economics

Welfare Economics

Yielding...

$$max \ W(u) = max \int_0^\infty u(c_t) e^{-\delta t}$$

s.t.

$$s_t \ge 0$$

and

$$\dot{s}_t = -c_t$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Welfare Economics

Hamiltonian approach: Add to maximand the RHS of the differential equation constraint times multiplier.

$$H = u(c_t)e^{-\delta t} - \lambda_t e^{-\delta t}c_t$$

with λ_t the **shadow price** at time *t* and $\lambda_t e^{-\delta t}$ the present value shadow price.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Welfare Economics

Welfare Economics

Maximizing H w.r.t. ct yields

$$\dot{u}(c_t) = \lambda_t \ \forall t$$

and

$$\frac{d(\lambda_t e^{-\delta t})}{dt} = -\frac{\partial H}{\partial t}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

-Welfare Economics

Welfare Economics

These imply

The increase in utility from consumption should equal the shadow price of the resource.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\blacktriangleright \frac{d\lambda}{dt} - \delta\lambda = \mathbf{0} \to \lambda_t = \lambda_0 e^{\delta t}.$

-Welfare Economics

Welfare Economics

These imply

The increase in utility from consumption should equal the shadow price of the resource.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\quad \bullet \ \frac{d\lambda}{dt} - \delta\lambda = \mathbf{0} \to \lambda_t = \lambda_0 \mathbf{e}^{\delta t}.$$

-Welfare Economics

Consumption is regulated by change in (shadow) price.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Difference in welfare functions is governed by state variable s₀ and discount rate parameter δ.

-Welfare Economics

Consumption is regulated by change in (shadow) price.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Difference in welfare functions is governed by state variable s₀ and discount rate parameter δ.

Versions of Welfare Functions

Variations on measuring utility

Malthus:

$$W(u;\delta)^{Malthus} := max_u \{ min_{c_t} \int_0^\infty u(c_t) e^{-\delta t} dt \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Versions of Welfare Functions

Variations on measuring utility

Ramsey:

$$W(u; \delta, B)^{Ramsey} := min \int_0^\infty [B - u(c_t)] dt$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $B = sup_t u(c_t)$.

Versions of Welfare Functions

Variations on measuring utility

Rawls:

$$W(u; \delta)^{Rawls} := max_u \{min_t u(c_t) e^{-\delta t}\}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Objectives under previous criteria

• The constraint $\int_0^\infty c_t dt \le s_0$ applies to all of the above.

- The shadow prices of the resources, λ₀, oppose consumption - with additional parameters (*B*, δ for example).
- Thinking statistically, the criteria are estimating equations for parameters.

Objectives under previous criteria

- The constraint $\int_0^\infty c_t dt \le s_0$ applies to all of the above.
- The shadow prices of the resources, λ₀, oppose consumption - with additional parameters (*B*, δ for example).
- Thinking statistically, the criteria are estimating equations for parameters.

Objectives under previous criteria

- The constraint $\int_0^\infty c_t dt \le s_0$ applies to all of the above.
- The shadow prices of the resources, λ₀, oppose consumption - with additional parameters (*B*, δ for example).
- Thinking statistically, the criteria are estimating equations for parameters.

Objectives under previous criteria

The criteria yield this inequality:

$$\lambda_0^{\textit{Rawls}} > \lambda_0^{\textit{Ramsey}} > \lambda_0^{\textit{Malthus}} > \lambda_0^{\textit{Hotelling}}$$

So the relevant effect - for sustainability - is to raise the shadow price of the exhaustible resource. And the relevant effect - for statistics - is to define consumption (and discount rate) as solution to estimating equations

Versions of Welfare Functions

Comparison of criteria

Versions of Welfare Functions

Insensitivity to Present or Future

Notice...

...the Malthus and Ramsey welfare functions 'weigh' the infinite future greater than the finite present.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

...the Hotelling and Rawlsian criteria 'weigh' the finite present greater than the infinite future.

Versions of Welfare Functions

Insensitivity to Present or Future

Notice...

...the Malthus and Ramsey welfare functions 'weigh' the infinite future greater than the finite present.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 ...the Hotelling and Rawlsian criteria 'weigh' the finite present greater than the infinite future.

Part III

Statistical Methods for Sustainablility

Sustainability Characterized

Chichilnisky (1997) introduces an axiomatization for intergenerational equity as a criteria for sustainability:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sustainability Characterized

Letting $\mathbf{u} = \{u_t\}_{t=1}^{\infty}$ be a bounded, real valued utility stream - on $(\Omega, \mathcal{F}_t, \mathbb{P} = \mathbb{P}^* + \mathbb{P}_{\infty}).$

- ► Insensitivity to the future: P_∞(W(u)) = 0 if P_∞ is a purely finitely additive measure.
- Insensitivity to the present: E_{ℙ*}[W(u)] = 0 for all countably additive measures P*

Sustainability Characterized

Letting $\mathbf{u} = \{u_t\}_{t=1}^{\infty}$ be a bounded, real valued utility stream - on $(\Omega, \mathcal{F}_t, \mathbb{P} = \mathbb{P}^* + \mathbb{P}_{\infty}).$

A D F A 同 F A E F A E F A Q A

- ► Insensitivity to the future: P_∞(W(u)) = 0 if P_∞ is a purely finitely additive measure.
- Insensitivity to the present: E_{P*}[W(u)] = 0 for all countably additive measures P*

Chichilnisky's axiomatization

Chichilnisky's axiomatization [1996,1997]:

$$W(\mathbf{u}) = \alpha \int_{R^+} u(c_t) d\mathbb{P}^*(t) + (1-\alpha)\mathbb{P}_{\infty}(\mathbf{u})$$

where \mathbb{P}_{∞} is measure zero on finite sets. This characterization ensures equity to present and unforseen generations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Characterization

Chichilnisky's axiomatization

The combination of measures which are singular w.r.t each other disallows ordinary optimization procedures.

 $\mathbb{P}^* \perp \mathbb{P}_\infty$

(ロ) (同) (三) (三) (三) (○) (○)

- Characterization

Chichilnisky's axiomatization

However: Both $d\mathbb{P}^*$ and $d\mathbb{P}_{\infty}$ are absolutely continuous with respect to $d\mathbb{P}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Characterization

Statistical Estimation

The goal here is to introduce statistical estimators for a sustainable development path - or utility stream - via a representation of Kullback-Leibler divergence.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Probability Measure Based Distance

Call:

$$D(d\mathbb{P}^k, d\mathbb{P}) = E_{d\mathbb{P}}[log(rac{d\mathbb{P}^k}{d\mathbb{P}})]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Probability Measure Based Distance

Let $d\mathbb{P}^k$ be the probability density induced by the filtration \mathcal{F} at the k - th cutoff of the utility stream. Then

$$\mathit{KL}(\mathit{d}\mathbb{P}^k, \mathit{d}\mathbb{P}) = \sum^k \mathit{d}\mathbb{P}\mathit{log}(rac{\mathit{d}\mathbb{P}_k}{\mathit{d}\mathbb{P}})$$

Probability Measure Based Distance

But $d\mathbb{P} = d\mathbb{P}^* + d\mathbb{P}_\infty$. So

$$extsf{KL}(d\mathbb{P}^k, d\mathbb{P}) =$$

= $\sum_{k=1}^{k} d\mathbb{P}^* \log(rac{d\mathbb{P}^k}{d\mathbb{P}^* + d\mathbb{P}_{\infty}}) + \sum_{k=1}^{k} d\mathbb{P}_{\infty} \log(rac{d\mathbb{P}^k}{d\mathbb{P}^* + d\mathbb{P}_{\infty}})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Probability Measure Based Distance

$$=\sum_{k}^{k}(d\mathbb{P}^{*}+d\mathbb{P}_{\infty})\textit{log}(d\mathbb{P}_{k})-\sum_{k}^{k}(d\mathbb{P}^{*}+d\mathbb{P}_{\infty})\textit{log}(d\mathbb{P}^{*}+d\mathbb{P}_{\infty})$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The second term is just the entropy of the full measure. Looking at the first term...

Probability Measure Based Distance

... and taking the conditional expectation

$$= E(\sum_{k}^{k} (d\mathbb{P}^{*} + d\mathbb{P}_{\infty}) log(d\mathbb{P}_{k}) | \mathcal{F}_{k})$$
$$= E(\sum_{k}^{k} d\mathbb{P}^{*} log(d\mathbb{P}_{k}) | \mathcal{F}_{k}) + E(\sum_{k}^{k} d\mathbb{P}_{\infty} log(d\mathbb{P}_{k}) | \mathcal{F}_{k})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Probability Measure Based Distance

yields

$$=\sum_{k}^{k} log(d\mathbb{P}_{k}) \mathcal{E}(d\mathbb{P}^{*}) + \sum_{k}^{k} log(d\mathbb{P}_{k}) \mathcal{E}(d\mathbb{P}_{\infty})$$

This is := $data \cdot parameters + data \cdot parameters$, as well as a convex sum of singular measures meeting Chichilnisky's criteria.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Probability Measure Based Distance

Minimizing

$$=\sum_{k}^{k} log(d\mathbb{P}_{k}) E(d\mathbb{P}^{*}) + \sum_{k}^{k} log(d\mathbb{P}_{k}) E(d\mathbb{P}_{\infty})$$

with respect to the parameters of the measures (which can include mixing parameter α) yields estimating equations which yield inference on utility/developments (i.e. consumption) paths

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Characterization

Next steps

Derive examples for singular measure pairs

 Investigate distribution of D, estimating equations, possible CUSUM test.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

► Thank CAARMS for the last speaking spot.

- Characterization

- Derive examples for singular measure pairs
- Investigate distribution of D, estimating equations, possible CUSUM test.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

► Thank CAARMS for the last speaking spot.

- Characterization

- Derive examples for singular measure pairs
- Investigate distribution of D, estimating equations, possible CUSUM test.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Thank CAARMS for the last speaking spot.