
PROBABILISTIC HEURISTIC SEARCH USING (MULTIVARIATE)
ORDER STATISTICS. ILLUSTRATED ON A NETWORK FLOW

PROBLEM IN TWO DIMENSIONS

KOBI ABAYOMI,PABLO VANEGAS

Abstract. Abayomi, Fang and Gebraeel [3] (AFG) created a methodology to supplant two
heuristic search algorithms on multivariate data with probabilistic versions: the Threshold
Algorithm (Fagin [16]) and the Minimal Probing Algorithm [8]).

This advance is motivated by identification of the ‘top (bottom) - k’ cases in a multi-
variate system. By exploiting distributional and dependency assumptions the probabilistic
algorithm yields a less ‘costly’ probe the ordered multivariate list. More generally: the
probabilistic search algorithms cast a deterministic heuristic search as a probabilistic one
via the copula and multivariate order statistics.

Vanegas [19] considered the reallocation of land areas after land development as an Integer
Programming (IP) control problem where the objective function is the minimization of
sediment flow to riverbeds subject to physical-hydrological constraints via a Network-Flow
(NF) formulation. The control variables in Vanegas [19] are calculated from spatial data via
raster maps via affine (piecewise-linear) functions; the optimal locations are discovered by
Heuristic search.

Here, we replace the deterministic heuristic search - which is used as an alternative to
solving the underlying Linear Programming (LP) problem - with a probabilistic one, using
the AFG approach. We retain the remainder of Vanegas setup with one exception: we make
minimal distribution assumptions on the data that arrive as raster maps and we use these
assumptions to generate distributional results on the multivariate list of locations.

Introduction

The setting for this paper is the identification of the best (or worst) k locations in a tableau

of n which have m− 1 attributes - or variables - which contribute to an mth control variable

or variable of interest. This is called a ‘top-k’ search [[4]] and the ‘locations’ needn’t be

spatial: any set of similar, not-necessarily identical or independent items - spatial locations,

components in a machine...really any system cast as multivariate random variates onto a

scoring function that generates a list is input to a ‘top-k’ type algorithm.

The goal is to find the top-k elements in the system using the least amount of informa-

tion: the fewest machines and minimal number of components in each machine; the fewest

locations and minimal number of variates at each location, etc. Generally, this is to sort

multivariate data while inspecting as little of it as possible; this is exactly the task in the

Date: June 26, 2015.
All Authors: Facultad de Ingeneria, Universidad de Cuenca, Cuenca, Ecuador. Corresponding Author,

email: kobi.abayomi@ucuenca.edu.ec.
1

well-known threshold algorithm (TA) [[5]] and its revision, the minimal probing (MPro) [[8]]

algorithm - algorithms that are prototypically deterministic in the sorting proceeds without

any distributional assumptions on the data and only the most general concatenation of the

component information [[15], [16], [13]].

Recent work [[2]] describes an approach to compute a top-k set of answers (analogous to

our cases, locations, machines) to an SQL query on a probabilistic database: this set is then

sorted by probability. This algorithm runs several Monte-Carlo simulations in parallel, one

for each candidate answer, and approximates each probability only to the extent needed to

compute correctly the top-k answers. Soliman also [[9]] studies the top-k query in an ‘un-

certain’ database. This paper integrates traditional top-k semantics with ”possible worlds”

semantics, and constructs a framework that encapsulates a probabilistic model and efficient

query processing techniques. While the paper demonstrates a minimal number of accessed

m-tuples the algorithms has exponential complexity in both time and component-wise space.

In affix to [9], [7] introduces polynomial algorithms for processing top-k queries in uncertain

databases under the generally adopted model of x-relations, and the algorithms run in near

linear or low polynomial time in uncertain databases.

In [18] and [11] model-driven approaches peculiar to sensor networks are used in conjunc-

tion with top-k type query processing. Our technique differs from these in that it is explicitly

probabilistic; we rely on multivariate distributional assumptions for the data, given the (par-

ticular degradation) model we outline below.

In direct appeal to the TA/MPro algorithms, [10] and [20] have introduced approximate

versions via ‘guaranteed’ thresholding of the error of selecting a non-top-k location. Our

approach differs because we explicitly score each location (case, machine), offer general results

for the choice of component-wise concatenation/scoring, and yield almost sure convergence

to the deterministic result under distributional assumptions.

Cao, Abayomi and Gebraeel [3] generalized these algorithms by exploiting probabilistic

information — i.e. explicitly assuming the control variables are data and thus instantiations

of random variables — allowing improvement on the ordinary deterministic algorithm by

using within item dependency and across item similarity.

We can consider heuristic searches, in this paper as the solution to an LP problem, as

the general case and the algorithm employed in Vanegas [2009] as a special case of ranked-

list sort of procedures that generate an ordered ‘list’ as a solution at each iteration, under

degenerate probabilistic assumptions.

Our innovation is to recast each of these algorithms under distributional assumptions, and

under more general functions for ‘scoring’ each machine (case, location, whatever), and in

2

this paper cast the solution to the LP problem as a special case of the ranked list algorithm

class of methods.

Heuristic Search as the General Case

We call here a heuristic search an iterative algorithmic approach to generating a solution

to an optimization problem [17].

We introduce this notation: let a = (a1, ..., an) be a set of location attributes which are

evaluated on random variates X, where s1(X) for example is the function which takes the

random variates which define the data for the problem and generates the attributes for

location 1, of n possible. X can be of any dimension; as well si(X) can be scalar or vector-

valued. For simplicity we require

(0.1) ai(X) : Rk 7→ Rn

to be the same k and p ∀ i.
Let a∗ be the optimal solution set for the location attributes. Let at be values of the

location attributes at iteration t of an algorithm. And let h(at, a∗) : (Rn,Rn) 7→ Rn be

a heuristic function that iteratively approximates the next iteration of location attributes

such that the distance of the next iterate is not greater than the previous from the optimal

solution. That is:

(0.2)

h(at, a∗) = at+1

s.t.

d(at, a∗) ≥ d(at+1, a∗)

for some distance function d.1

The important parts of this abstraction are:

• The separation of the random data from the deterministic attributes via functional-

ization of the attributes as onto the data.

• The definition of the heuristic function via those attributes.

The attributes a are cast as deterministic functions on random variates: this allows the

specification of these ranked list type algorithms to be fully general; the heuristic function,

then, as well is a deterministic onto function subject only to the definition of distance function

d, which may specifically be set as d = h.

1The dimension of this function need not be specified.
3

Vanegas, Top-‘k’ & Minimal Probing; Algorithms for Ranked Lists; The

special cases

The algorithm in section 3.6 in Vanegas [19] sorts a list of nodes in a directed graph

according to values of a control variable. The algorithm enters the best candidates, iteratively

and deterministically, to the top of the ordered list, and then proceeds at the next iteration

to enter the next best candidates. We will elucidate the algorithm full below after we

have constructed the theoretical buttressing for our probabilistic version; here, note merely

that the Vanegas algorithm generates an ordered list which is stable and increasing at each

iteration.

In this way the Vanegas heuristic differs only from the so-called ‘top-k’ algorithm in that

the calculations ‘behind’ (if you will) the ordered list are more complex than the scoring

function common to the top-k procedure. Both, however, use affine scoring and the stopping

rule for both is the same: generate k extremal values of the control variable. Let us introduce

the top-k algorithm

Top-’k’. The TA algorithm for top-k ranking was first proposed by Fagin in 1996 [[5]].

The algorithm begins under the assumption that each column of the data is ordered. The

algorithm proceeds by scanning the sorted data row-by-row, i.e. case by case (location,

machine), and stops when the threshold value of the row is no greater than the minimal

overall score of current top-k list. Nevertheless, TA treats the scores as deterministic values,

and does not incorporate the distributional information of the scores. Here we develop

a probabilistic algorithm by leveraging the dependence among components. This yields a

probabilistic TA procedure which converges to the deterministic TA result, but requires less

iterations at less than certain levels of tolerance. We recommend either [5] or [6] for a full

take on the TA algorithm.

Minimal Probing. The Minimal Probing (MPro) algorithm [[8]] was developed to mini-

mize probe ‘cost’ for top-k queries. MPro differs from TA chiefly in the relaxation of the

sorting prerequisite: in MPro the data are arrive unsorted and the goal is to ‘order’ as min-

imally as possible. The MPro algorithm, then, is a recipe for returning the top-k locations

(cases, machines) with iterative sorting of particular data. In the deterministic case, MPro

is demonstrated to be probe-optimal: i.e. that the prescribed order for inspecting locations

has the minimum iterations. Nevertheless, the algorithm is designed for deterministic values

and ignores any distributional information for the data. We introduce here a probabilistic

version of the MPro algorithm which minimizes the probing ‘cost’ for the top-k query by

explicitly assuming the data are random variables. We illustrate our augmented algorithm
4

(probing strategy) with an associated objective (stopping criterion), based on an explicit

assumption about the joint distribution of the data.

The data as random variates

Let real valued X be the entire data; Xij the (i, j)th variate, without loss of generality let

the dimension of X be m×n.2 For simplicity we do hold that real vector valued Xi can follow

multivariate normal distribution; this is to assume the vectors are independent from one

another (as i = 1, .., p) but retain inter-component dependence (as j = 1, ..., p). It should be

noted that we can consider any elliptical multivariate distribution (multivariate exponential

distribution (MVE) or multivariate inverse Gaussian distribution (MIG), for example), i.e.

any distribution with second order dependence. The point here is to characterize the data

as random, thus probabilistic, and be able to collect - distributionally and parametrically -

those properties

Let X(k)j be the kth order statistic for column j such that X(n)j = max1≤i≤pXij and

X(1)j = min1≤i≤pXij. The goal to derive the distribution for the random vector X(r) =

[X(r)1X(r)2, ..., X(r)m], as well as certain functions of it.

Deriving FX(r)
, the c.d.f. for X(r). For illustration we start with the two-component

case. The derivation mimics the problem of putting n balls into 4 bins with constraints, as

illustrated in Table 1.

Xi1 Xi2 Total
≤ x2 > x2

≤ x1 t1 t2 l1
> x1 t3 t4 n− l1
Total l2 n− l2 n

Table 1 Deriving the distribution of multivariate order statistics when m = 2

The derivation:

FX(r)
(x1, x2) = P(X(r)1 ≤ x1, X(r)2 ≤ x2)

= P(At least r of Xi1 ≤ x1, at least r of Xi2 ≤ x2)

=
∑
l1,l2≥r

P(Exactly l1 of Xi1 ≤ x1, exactly l2 of Xi2 ≤ x2)

2The data needn’t be square or even matrix.
5

(0.3) =
∑

0≤t1,t2,t3,t4≤n
t1+t2+t3+t4=n

r≤l1,l2≤n

n!

t1!t2!t3!t4!
pt11 p

t2
2 p

t3
3 p

t4
4

where

p1 = P(Xi1 ≤ x1, Xi2 ≤ x2),(0.4)

p2 = P(Xi1 ≤ x1, Xi2 > x2),(0.5)

p3 = P(Xi1 > x1, Xi2 ≤ x2),(0.6)

p4 = P(Xi1 > x1, Xi2 > x2).(0.7)

So, for the special cases of the above result, the c.d.f. of the “top row” is

(0.8) FX(n)
(x1, x2) = pn1

and the c.d.f. of the ”bottom row” is

(0.9) FX(1)
(x1, x2) = 1− (p2 + p4)n − (p3 + p4)n + pn4 .

This can immediately be generalized to m-component case following the above outline.

Let c = 2m, and the result is as follows

FX(r)
(x1, x2, ..., xm)

=P(X(r)1 ≤ x1, X(r)2 ≤ x2, ..., X(r)m ≤ xm)

=
∑

0≤t1,t2,...,tc≤n
t1+t2+..+tc=n
r≤l1,l2,...,lm≤n

n!

t1!t2!...tc!
pt11 p

t2
2 ...p

tc
c ,(0.10)

(0.11)

where p1, p2, ..., pc, l1, ..., lm are defined in the same manner as two-component case.

Deriving the distribution of functions of X(r). After obtaining the c.d.f. of X(r), we

need to derive the distribution of scoring functions τ(.) of X(r). Typically, the ‘scoring’

function τ(.) is a monotone function like max,min, sum [see [6]]. Let Gr denote the c.d.f.

of τ(X(r)). When τ is the max function,
6

Gr(s) = P(τ(X(r)) ≤ s)(0.12)

= P(max
1≤j≤m

X(r)j ≤ s)

= P(∩mj=1X(r)j ≤ s)

= FX(r)
(s, s, ..., s).(0.13)

Similarly, when τ is the min function,

Gr(s) = P(τ(X(r)) ≤ s)(0.14)

= P(min
1≤j≤m

X(r)j ≤ s)

= P(∪mj=1X(r)j ≤ s)

= 1− P(∩mj=1X(r)j > s)

= 1− F̄X(r)
(s, s, ..., s),(0.15)

where F̄X(r)
is the survival function of X(r). For the distribution of the sum, for example,

of the rth row, we just adopt the linear transformation on the X(r), then take limit with

respect to other variables. This is just the ordinary change of variable method which enables

us to get the desired c.d.f. for monotone functions τ(.) of each rth row.

From the distribution of τ(X(r)), we can compute the probability that we have found the

“true” top-k locations at each row. Suppose tr is the minimum overall score of the current

top-k list before probing the rth row, then

pr , P(The algorithm stops at rth row)

= P(τ(X(r)) ≤ tr) = Gr(tr).(0.16)

Theorem 0.1. Assume τ : Rm → R is a non-decreasing function. Then pr is nondecreasing

with respect to r.

Proof. When r ∈ 1, 2, ..., n− 1 then r + 1 ∈ 2, ..., n. As we mine the data ‘deeper’, we have

tr+1 ≥ tr since the top-k list will be updated only when the overall score of a ‘new’ location

is larger than that of one of the existing locations. As they are order(ed) statistics, X(r)j

is larger than X(r+1)j in stochastic order, ∀j = 1, ...,m. Since τ is non-decreasing function,

then τ(X(r)) is larger than τ(X(r+1)) in stochastic order [see [12]].
7

From the definition of stochastic order,

pr = P(τ(X(r)) ≤ tr)(0.17)

≤ P(τ(X(r)) ≤ tr+1)

≤ P(τ(X(r+1)) ≤ tr+1) = pr+1.

Hence the result holds. �

Using the monotone property of pr, with a pre-determined threshold confidence level α,

we can stop the the algorithm when pr ≥ α. In this way, we can find the top-k locations

with desired confidence by scanning fewer rows than the TA.

Probabilistic TA algorithm. The algorithm then is a probabilistic augmentation of the

top-k ranking algorithm based on TA.

Algorithm

(1) Rank each attribute of the

original

database in descending

order

(2) Probe the "sorted" database

row-by-row from the top,

and find the current top-k

locations after probing each

row

(3) Compute the minimum of

the overall scores of the

current

top-k locations

(4) Repeat step 2 and 3 until

the probability of finding

the top-k exceeds the

threshold, i.e.,

P(g(X(r)) ≤ tr) ≥ α.

Table 2 Probabilistic Threshold Algorithm

Probabilistic top-k query based on MPro algorithm

The Minimal Probing (MPro) algorithm [[8]] was developed to minimize probe ‘cost’ for

top-k queries. MPro differs from TA chiefly in the relaxation of the sorting prerequisite:

in MPro the data are arrive unsorted and the goal is to ‘order’ as minimally as possible.

The MPro algorithm, then, is a recipe for returning the top-k locations (cases, machines)

with iterative sorting of particular data. In the deterministic case, MPro is demonstrated
8

to be probe-optimal: i.e. that the prescribed order for inspecting locations has the mini-

mum iterations. Nevertheless, the algorithm is designed for deterministic values and ignores

any distributional information for the data. We introduce here a probabilistic version of

the MPro algorithm which minimizes the probing ‘cost’ for the top-k query by explicitly

assuming the data are random variables. We illustrate our augmented algorithm (probing

strategy) with an associated objective (stopping criterion), based on an explicit assumption

about the joint distribution of the data.

Explicitly modeling the data. As before, suppose Xij is the score of the jth compo-

nent of the ith machine, Xij ∼ N(µij, σ
2
ij), i = 1, ..., n, j = 1, ...,m. Here we need to also

make explicit the correlation structure between the components, that is, Corr(Xij, Xij∗) =

Corr(Xkj, Xkj∗) for all i, j, j∗, k.

Thus the distribution of scores of the ith location is Xi ∼ N(µi,Σi), where

µi = (µi1, µi2, ..., µim),

Σi = V
1/2
i RV

1/2
i ,

Vi = diag(σ2
i1, σ

2
i2, ..., σ

2
im),

Rjk = Corr(Xij, Xik) , ρjk.

Let X∗ij =
Xij−µij
σij

, then X∗ij ∼ N(0, 1). If we denote X∗i = (X∗i1, X
∗
i2, ..., X

∗
im), X∗i ’s will be

i.i.d multivariate normal, and the correlation matrix of X∗i = (X∗i1, X
∗
i2, ..., X

∗
im) is

R =

 1 · · · ρ1m
...

. . .
...

ρm1 · · · 1

 .
We can use sample correlation matrix of the standardized variables as our estimate for R.

In practice, R is estimated from historical (training) data and could be used for validation.

The essential difference between the MPro and TA algorithms is that the entire row of

ordered data is not available in MPro as we iterate. Thus, we need to calculate some sort

of conditional information at each iteration and let the locations (cases, machines) enter the

‘top-k’ set based on this conditional criterion.

*Probing strategy. For TA, we have to probe the data row-by-row; all components in

a row (machine, location, case) are inspected simultaneously. In MPro we can probe the

components more flexibly.
9

Suppose the scoring function is the sum, i.e., the overall score of the ith location is

(0.18) τi =
m∑
j=1

Xij.

Assume the order of the components to probe is the same for all inspected locations

(machines, cases) at each iteation. After probing r components, the conditional expectation

is

(0.19) E(τi|Xir) =
r∑
j=1

Xij +
m∑

j=r+1

E(Xij|Xir).

Since Xij and Xir are jointly normally distributed,

E(Xij|Xir) = µij + ΣijrΣ
−1
irr(Xir − µir),

where

Xir = (Xi1, Xi2, ..., Xir),

µir = (µi1, µi2, ..., Xµir),

Σijr = Cov(Xij,Xir),

Σirr = V ar(Xir).

The conditional variance is

Var(gi|Xir) = Var(
m∑

j=r+1

Xij|Xir)

= V ar(Yi|Xir)

= Σiyy − ΣiyrΣ
−1
irrΣ

′
iyr,

where

Yi =
m∑

j=r+1

Xij,

Σiyy = Var(Yi) =
∑

1≤j,k≤m

Cov(Xij, Xik)

and
10

Σiyr = Cov(Yi,Xir)

= (
∑m

j=r+1 Cov(Xij, Xi1),

...,
∑m

j=r+1Cov(Xij, Xir)).

We define the probing score as

(0.20) Spi , E(τi|Xir) + λSd(τi|Xir),

where λ is the tuning parameter, and Sd(τi|Xir) =
√

Var(τi|Xir). We use the probing scores

decide the order of data inspection: i.e., at each iteration, the algorithm probes the location

(machine, case) with the highest probing score unless the location has been completely

probed. The probing score can also be regarded as the upper bound of the confidence interval

of the overall score, given the information gained from components that have been probed.

The algorithmic parameter λ we introduce in the probing score Sp should be chosen using

training data and can serve to optimize the number of iterations..

A probabilistic stopping criterion for MPro. Recall that Xir denotes the components

of location i that have been probed. We sort the locations ascending according to E(τi|Xir),

and let Wi = τ[i]|X[ir] denote the conditional overall score with ith smallest mean. Note that

Wi is not an order statistic. Let Y = minni=n−k+1Wi, and Z = maxn−ki=1 Wi.

The stopping criterion of the algorithm is

(0.21) P(Y ≥ Z) ≥ α

where α is the pre-determined threshold.

To calculate P(Y ≥ Z), we use P(Y ≥ Z) =
∫∞
−∞

∫∞
z
fy(y)fz(z)dzdy, where

(0.22) fY (y) =

(
n∑

i=n−k+1

fi(y)

F̄i(y)

)
n∏

i=n−k+1

F̄i(y),

(0.23) fZ(z) =

(
n−k∑
i=1

fi(z)

Fi(y)

)
n−k∏
i=1

Fi(y).

Here Fi, F̄i, and fi are the c.d.f, survival function and p.d.f. of Wi, respectively. In specific,

when Wi is a fixed number, that is, if location i is fully probed, fi is the Radon-Nikodym

derivative of Fi [see [21]].
11

Algorithm

(1) Calculate the probing scores

Sp(Q) and put them in the

probing queue Q.top, where

Q denote the observed

information.

(2) Probe Q.top, update Q.
(3) While the stopping criterion

is not satisfied, repeat

step 1 and 2.

Table 3 Probabilistic MPro Algorithm

An MPro probabilistic algorithm.

Properties of the algorithm. The augmentation of the MPro algorithm with the stopping

criteria for explicitly probabilistic data allows us to demonstrate that the ranking algorithm

can stop as the number of iterations increases.

Theorem 0.2. Define Pstop = P(Y ≥ Z), and let npr denote the total number of probes.

Then Pstop → 1 as npr → n ·m.

Proof. When npr = n · m, all the components of all the locations are probed, and all the

conditional overall scores are fixed values. Recall that Wi’s are conditional overall scores

sorted ascending according to their means, then we have P(Y ≥ Z) = P(minni=n−k+1Wi ≥
maxn−ki=1 Wi) = 1. Thus when npr → n ·m , the algorithm stops almost surely. �

As well, the choice of score — using the first and second conditional moments of τ at each

iteration — is sufficient for the stopping criteria.

Theorem 0.3. The probing scores Sp are ‘sufficient’ to calculate Pstop.

Proof. Y, Z are order statistics of the conditional overall scores. Since the scores are normally

distributed, the conditional overall scores also follow the normal distribution. Recall that the

probing score Sp is linear combination of conditional expectation and conditional standard

deviation. The Sp’s are ‘sufficient’ to calculate Pstop in the sense that mean and s.d. are

sufficient to characterize normal distribution. �

This is the crux of the probabilistic extension of the TA algorithm: the derivation of the

distribution of the multivariate order statistics, the rth of n independent, sorted, rows. We

use this result to predict the stopping ‘place’ (iteration) for the Threshold Algorithm, and

use that as the objective.
12

this is referred to as a ‘top-k’ search [[4]]. The goal is to find the top-k locations using

the least amount of information: the fewest locations and minimal number of components in

each location. More generally, this is to sort multivariate data while inspecting as little of it

as possible; this is exactly the task in the well-known threshold algorithm (TA) [[5]] and its

revision, the minimal probing (MPro) [[8]] algorithm. These algorithms are prototypically

deterministic: the sorting proceeds without any distributional assumptions on the data and

only the most general concatenation of the component information [[15], [16], [13]]. Our

innovation is to recast these algorithms under distributional assumptions, and under more

general functions for ‘scoring’ each machine (case, location).

Locating Best Nodes: Vanegas, P-top-k, P-MPro

We set up the example using the approach in [1] but let:

(0.24) FX˜ = CΦ(FXD, ..., FST)

be the joint distribution that we impose via the Gaussian Copula CΦ [14]. This is a

necessary restriction on the problem so that we can exploit the 2-dependence of the Gaussian

distribution and parameterize our probabilistic queries as above; the copula approach allows

us to retain the same marginal distributions as in [1].

The approach we take here is strictly frequentist. This diverges from [1]: the

distributions we list here and in (0.24) are not priors - here the priors are degenerate, as

such are the posteriors - but the distributions for each margin, which we join via the Gaussian

Copula.

Let the data be as before:

• Flow Direction: We let each element in

(0.25) X˜ FD ∼ DiscUnif(0, 8)

that is a discrete uniform random variable with equal mass on each of the possible

flow directions.

• Flow Production: Each

(0.26) X˜ FP,0, X˜ FP,1 ∼ N(0, 1)

without loss of generality.

• Flow Factor: Each

(0.27) X˜ FF,0, X˜ FF,1 ∼ Unif(0, 1)

without loss of generality.
13

• Breakpoint 1/Retention Capacity: Each

(0.28) X˜ BP1,0, X˜ BP1,1 ∼ Unif(0, 1)

without loss of generality.

• Breakpoint 2: Each

(0.29) X˜ BP2,0, X˜ BP2,1 ∼ Unif(0, 1)

without loss of generality

• Streams: Each

(0.30) X˜ ST ∼ Ber(0, 1)

The same ‘toy’ data in [1] and [19] are reproduced here. The data are:
14

(0.31) X˜ FD =


5 5 5 0
4 4 4 3
4 5 3 3
4 3 3 2



(0.32) X˜ FP,0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



(0.33) X˜ FF,0 =


1 .5 .5 1
1 .4 .7 .2
1 .2 .7 .2
1 1 1 1



(0.34) X˜ BP1,0 =


.5 .5 .5 .5
.5 .5 .5 .5
.5 .5 .5 .5
.5 .5 .5 .5


and

(0.35) X˜ BP2,0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Figure 1 Matrix representation of data

These are five 4 × 4 matrices generating n = 16 ‘locations’. Another simplification we

exploit is to cast the attributes of interest - Effective Accumulation (EA) - as the output of

the attribute function we define above in eq. (0.1). The data are also defined by the direction

of flow (inferable from the the flow direction matrix) but representable as a directed graph,

see Figure 2

Since we are taking a strictly frequentist approach we ignore the distribution of the trans-

formation - section II in [1] and instead cast all of the random variates as location attributes

(see eq. (0.1), or in the language of [3], as the score of the multivariate data vector. Here
15

we sublimate the distribution of the remainder of the affine transformations in [1] and focus

on Effective Accumulation, which, as an affine transformation of Gaussian random variate -

via (0.24) remains Gaussian.

4

7

11

1510 16

13 14

3

12

8

2 6

91
5

Figure 2 Graphical representation of data in Figure 1

In this example we set k = 7 and calculate the probability that a node is in the top-7

candidates for deforestation at each iteration. Note the difference between the TA and MPro

algorithms: once a node enters the top-7 in TA it is almost certain to remain in the top-5 as

the probabilistic calculation is done list-wise. The MPro approach, on the other hand, has

a high probability for each node to remain in the top-5 once entered - but this probability

is not certain.

Iteration 1 2 3 4 5 6 7
node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9
node 10
node 11
node 12
node 13
node 14
node 15
node 16

Figure 3 7 iterations of the Probabilistic TA on the Network Flow problem. Red
cells have greater than 75 percent probability of being in top 7; orange greater than
50 percent. The true list is discovered after only 6 iterations.

16

On this low dimension problem the Probabilistic TA approach outperforms the CAMF

heuristic in [19] and the Markov Chain approach in [1]. Once the threshold probability for

inclusion in the list of best locations (top 7 in this case) - the list remains stable.

Iteration 1 2 3 4 5 6 7
node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9
node 10
node 11
node 12
node 13
node 14
node 15
node 16

Figure 4 7 iterations of the Probabilistic MPro on the Network Flow problem.
Red cells have greater than 75 percent probability of being in top 7; orange greater
than 50 percent. The true list is discovered after only 5 iterations. Notice, though
that node 16 enters, but drops out after 3 iterations.

The Probabilistic Minimal Probing on the Network Flow problem finds the true list in

only 5 iterations. Notice that there is more ‘movement’ in the list - for instance, node 16

enters the top 7 but exits by iteration 4. This is a feature of multivariate affine functions

that determine the Network Flow and the estimation of dependency within location, across

data.

17

References

1. Kobi Abayomi and Pablo Vanegas, Bayesian multivariate markov processes for a network flow optimiza-
tion problem, Submitted to IEEE Transactions.

2. D. Suciu C. Re, N. Dalvi, Efficient top-k query evaluation on probabilistic data, ICDE 2007 (2007), 886
– 895.

3. F. Cao, K. Abayomi, and N. Gebraeel, Probabilistic ‘best set’ sorting algorithms for multivariate (prog-
nostic) data., Under Review,Ieee Transactions on Automation Science and Engineering (2013).

4. M. Soliman F. Ilyas, G. Beskales, A survey of top-k query processing techniques in relational database
systems, ACM Computing Surveys 40 (2008), no. 4, 1–58.

5. R. Fagin, Combining fuzzy information from multiple systems, PODS 1996 (1996), 216–226.
6. N Gebraeel, Prognostics-based identification of the top-k units in a fleet, IEEE Transactions on Automa-

tion Science and Engineering 7 (2010), no. 1, 37–48.
7. G. Kollios D. Srivastava K. Yi, F. Li, Efficient processing of top-k queries in uncertain databases with

x-relations, IEEE transactions on knowledge and data engineering 20 (2009), no. 12, 1669–1682.
8. S. Hwang KC. Chang, Minimal probing: Supporting expensive predicates for topk queries, SIGMOD 2002

(2002), 346 – 357.
9. KC. Chang M. Soliman, I. Ilyas, Top-k query processing in uncertain databases, ICDE 2007 (2007), 896

– 905.
10. R. Schenkel M. Theobald, G. Weikum, Top-k query evaluation with probabilistic guarantees, VLDB 2004

30 (2004), 648–659.
11. W. Lee D. Lee M. Ye, X. Liu, Probabilistic top-k query processing in distributed sensor networks, ICDE

2010 (2010), 585–588.
12. Albert W. Marshall and Ingram Olkin, Inequalities: Theory of majorization and its applications, Aca-

demic Press, 1979.
13. A. Natsev, Y. Chang, J. Smith, C. Li, and J. Vitter, Supporting incremental join queries on ranked

inputs, VLDB 2001 (2001), 281–290.
14. Roger Nelsen, An introduction to copulas, Springer, 2006.
15. S. Nepal and M. Ramakrishna, Query processing issues in image(multimedia) databases, ICDE 1999

(1999), 22–29.
16. A. Lote R. Fagin and M. Naor, Optimal aggregation algorithms for middleware, PODS 2001 (2001).
17. Stuart Russell and Peter Norvig, Artificial intelligence, a modern approach, Prentice Hall.
18. A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang, A sampling-based approach to optimizing

top-k queries in sensor networks, ICDE 2006 (2006), 68–78.
19. Pablo Vanegas, Dirk Cattyrsse, and Jos Van Orshoven, Allocating reforestation areas for sediment flow

minimization: an integer programming formulation and a heuristic solution method.
20. Y. Zhang J. Pei W. Wang W. Zhang, X. Lin, Threshold-based probabilistic top-k dominating queries, The

VLDB Journal 19 (2010), no. 2, 283–305.
21. David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge Univer-

sity Press, 1991.

18

	Introduction
	Heuristic Search as the General Case
	Vanegas, Top-`k' & Minimal Probing; Algorithms for Ranked Lists; The special cases
	Top-'k'
	Minimal Probing

	The data as random variates
	Deriving FX(r), the c.d.f. for X(r)
	Deriving the distribution of functions of X(r)
	Probabilistic TA algorithm

	Probabilistic top-k query based on MPro algorithm
	Explicitly modeling the data
	*Probing strategy
	A probabilistic stopping criterion for MPro
	An MPro probabilistic algorithm
	Properties of the algorithm

	Locating Best Nodes: Vanegas, P-top-k, P-MPro
	References

