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Re-identification is the process of matching records or behaviors
that belong to the same individual, sometimes when the individual is
acting anonymously. The ability to re-identify individuals from their
social network behavior—their interactions with others on a social
network, has many real-world implications in areas such as fraud de-
tection, online target marketing, and author attribution. We consid-
ered statistics for re-identification in social network data from three
popular network models: Erdös-Renyi, Small World and Scale Free.
Many researchers who have worked on these statistical physics mod-
els — while cognizant of the inherent stochasticity of the problem —
have inadequately addressed statistical estimation and inference. We
view re-identification, in this setting, as hypotheses tests of network
similarity modulo a network data model. In this paper, we offer a for-
mal statistical framework for re-identification, using first principles
and the algorithmic specification of these models. Using our frame-
work, we illustrate the method and its performance on three network
data examples: simulations, the Enron emails, and a telecommunica-
tions dataset.

1. Introduction. As humans generate more and more data in their
daily lives, they leave behind massive trails of information that reveal their
unique behavioral characteristics. Using this data, it is possible to identify
each individual. Methods similar to those that rely on biometric data, us-
ing fingerprints and retinal scans to identify people, are needed to identify
individuals through their behavioral data, including social-network data.

Problems of statistical re-identification in networks have been identified
in the literature regarding various real-world applications. For example, a
repetitive fraud problem has been identified by telecommunications firms; an
individual perpetrates a fraud, his account is disconnected for non-payment,
and then that same individual signs up for another account, using a different
alias, perpetrates the same type of fraud, has his account disconnected again,
and so on. The problem for the firm is to identify the user accounts as
fraudulent as early as possible by linking new accounts to known fraudulent
ones employing user behavior, for example similarities in call behavior, used
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to create behavioral signatures [Hill et al. (2006); Cortes, Pregibon and
Volinsky (2003)]. Network signatures have also been shown to be effective in
completing the re-identification task of identifying online users based on their
browsing behavior to provide better targeted marketing and advertising [Hill
et al. (2006)]. In addition, social network signatures have been used for
author attribution of written documents, where the identities of authors
of articles can be inferred based on the authors they citations [Hill and
Provost (2003)]. The applications of re-identification are vast, ranging from
protecting the privacy of personal records to asymmetric threat detection for
national security. Therefore, developing reliable methods for re-identification
of users is an important problem.

In this paper, we take a network-based approach to the re-identification
task. Network data models [Goldenberg et al. (2009)] are applied in fields
as diverse as genomic regulation in biology [Kanehisa and Goto (2000)] and
the social geography of weblogs [Gopal (2007)]. Traditionally, these net-
works have been modeled by the random networks of Erdös and Rényi
(ER) [Erdös and Rényi (1959)]. More recently, more complex structures
have been suggested by Watts and Strogatz’s (WS) [Watts and Strogatz
(1998)] and Barabási and Albert’s [Barabási and Albert (1999)] small-world
and scale-free network structures (SF), respectively.

Each of these models is random — the models are generators for network
structures under stochasticity — and each of the models may be ’fit’, in
the sense that each specifies parameters that are dependent upon the ob-
served networked data. In fact: “the structural analysis of network graphs
has traditionally been treated primarily as a descriptive task, as opposed
to an inferential task, and the tools commonly used for such purposes de-
rive largely from areas outside of ‘mainstream’ statistics” [Kolaczyk (2009)].
Commonly, attention is focused on characterizing degree distributions or
diameters [Newman, Barabsi and Watts (2006)] as opposed to parameter
estimation or goodness-of-fit.

This paper presents a precise statistical method for solving the re-identifi-
cation problem — the classification or location of nodes in a network that
represent the same identity, i.e., have the same signatures. In social network
data, this problem is often means identifying people by their network connec-
tions or relational patterns. For example, re-identification in social networks
has been implemented by Cortes, Pregibon and Volinsky (2003) and Hill
et al. (2006) for telecommunications fraud detection. Their approaches fo-
cus on performing re-identification on a dynamic network through multiple
tuning parameters and similarity scores while ignoring any specified net-
work models. In addition, Hill and Nagle (2009) provided an approach to
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re-identification by using a normal approximation for distributions of simi-
larity. Our work extends the extant research on this network-re-identification
task.

Much of the work on the Watts-Strogatz and Scale-Free models, in par-
ticular, has focused on their construction: design algorithms, settings where
they might arise, and descriptive properties such as the clustering coefficient
or average geodesic length [Newman, Barabsi and Watts (2006)]. Statisti-
cal inference methods and properties have been infrequently addressed in
relation to these models, principally because the model specifications resist
inferential approaches.

Alternately, p1 and p∗ models –those that impose a distribution from
an exponential family for the adjacency matrix–allow, in theory, straight-
forward application of typical statistical inference procedures. Addition-
ally, Hoff, Raftery and Handcock (2002) developed a latent space model–
based on an established latent geometry on nodes–to achieve statistical flex-
ibility in accurately describing a network. These types of models have been
used for inference on complex networked data, in contrast to the relative
lack of inferential results for WS and SF type networks.

In this paper we provide information about our investigation of statisti-
cal inference for the ER, WS and SF models for network data through a
consideration of the re-identification problem. We illustrate, in particular, a
method for considering each of the graphs as probability models and data
‘fit’ to a model as a random instantiation. We approach the problem by ex-
ploiting the algorithmic specifications of each of the graphs, as set out in the
literature [Barabási and Albert (1999); Erdös and Rényi (1959); Watts and
Strogatz (1998)]. Our contribution is placing these models within a statisti-
cal framework and describing the of inferential — estimation and hypothesis
testing — procedures that are meaningful for observed data.

This paper is a reconsideration of the re-identification problem using an
exact statistical characterization for the ER, WS and SF models. In this pa-
per, we address re-identification, beginning with a definition of the similarity
’score’. This approach offers distributional results and consequently yields
score distributions, parameter estimation, and hypothesis testing methods
in a proper statistical setting. We present our findings on simulated net-
work data, the Reality Mining dataset of Eagle and Pentland (2006) and
the infamous Enron emails.

The rest of the article is organized in the following way. In Section 2, we
present our general methodology; Section 3 contains the details about score
distributions, followed by a discussion of parameter estimation in Section
4. We address hypothesis testing in Section 5. Results from simulated and
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real-world data are found in Sections 6 and 7, respectively. A discussion with
conclusions is in Section 8.

2. Methodological Overview. We view individual networks G as
draws from a family of networks G based on a specified probability distri-
bution Fθ in the same way that a random variable X is an instantiation of
X(ω) (drawn from a sample space Ω) based on a (not the same) probability
distribution Fθ, say. The distribution of G, Fθ, say, may be ethereal: implic-
itly, we consider the distribution of a graph as arising from an algorithmic
construction in lieu than of a complete, explicit specification. In fact, the
difficulty in characterizing Fθ lies in mapping the graphical object to an
observable datum.

We choose to elide this vagueness by focusing on a particular representa-
tion of a random graphical object and then considering its statistical prop-
erties. Under this formulation, Gθ is a random object — with G the instan-
tiation. We choose a particular representation of this instantiated network
and then adopt traditional statistical techniques for analyzing its structure
by considering its distribution, or functions of it, via the algorithmic speci-
fication of Fθ

Formally, let Gθ be a family of random network structures indexed by a
vector valued parameter θ ∈ Θ. This is: Gθ = {G ∼ Fθ|θ ∈ Θ}. A realization
of Gθ is a network, G, consisting of vertices v ∈ V and edges e ∈ E, where
V and E are the vertex and edge sets, respectively.

When speaking of vertices and edges, it is convenient to index the vertices–
denoted vi for all i ∈ 1 . . .# {V }–and to denote an edge between vertices vi
and vj by eij . For simplicity, we will often refer to a vertex vi just by i, its
index number only. A convenient representation of a network of order n is
in terms of its n× n adjacency matrix,

A =

a1
...

an

 =

a11 . . . a1n
. . .

an1 . . . ann

 ,
where

aij =

{
1, if edge exists between i and j
0, otherwise.

This is: A(G) - the adjacency matrix of G. The sum of the ith row (or
column) of A gives the degree of node i–the number of edges connected to
i–denoted di. Notice that A = A(G) is a particular choice of representation
of the random graphical object G. This allows us to be very general when
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considering random graphical object, and very specific when referring to the
matrix-valued random variable A.

Using A, we look to define statistics η(A) = η(A(G)) (in the same way
that we define statistics, η(X), on random samples X ∼ F ) that we can use
to address the re-identification problem.

2.1. Re-identification in a Network Model. For the re-identification prob-
lem, we are interested in whether or not two nodes have the same signature,
i.e., represent the same entity [Hill and Nagle (2009)]. Consider, for example,
a telecommunications network. A person may appear more than once via a
cell phone number and a land line. The signature of the cell phone and land
line numbers is an identifier for the phone user. In our setup, phone user i
is node i in a network model. We denote the signature of node i by σ(i).

In the network model, given two nodes i and j, we are interested in the
‘similarity’ between i and j, a fortiori, the distribution of this similarity. We
consider the overlap score statistic:

(2.1) η(A) ≡ S(i, j) = 〈ai,aj〉 = # {i∗ : ai,i∗ = aj,i∗ = 1, i∗ = 1, . . . , n}

with 〈·, ·〉 the usual dot product as our measure of similarity. When i = j,
we call S(i, i) the match score, and when i 6= j, we call S(i, j) the non-
match score. The match score is nothing more than the degree distribution
of a particular node. The non-match score, on the other hand, measures
how many edges two particular nodes share. If (limiting) distributions can
be calculated for both scores, then the likelihood of an observed score can
be known, and we can frame similarity via hypothesis testing.

Another way to say this is to suppose distribution S(i, j) ∼ Fθ. We could
then suggest

(2.2) H0 : σ(i) = σ(j) vs. Ha : σ(i) 6= σ(j), i = 1, . . . , n

as a re-identification test (or tests) for person/node j. A straightforward
way to conduct the test is with the observed value of S(i, j) as the estimator
for σ(i). Our approach is to notice that network construction algorithms —
for the Erdös-Rènyi, Watts-Strogatz, and Barabási-Albert scale-free models
— are sufficient for finding limiting score distributions for this particular
choice of statistic η(A) = 〈ai,aj〉.

For example, the probability that two nodes share an edge can be deduced
from the the rewiring scheme discussed by Watts and Strogatz (1998). We
use these probabilities to completely specify the non-match distributions
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(section 3 provides details). Therefore, given a network construction, state-
ments about the likelihood of an observation can be made. Hypothesis tests
formalize such statements.

2.2. Distributions for Similarity. Theoretically, Fθ can be written down
exactly: in practice, of course, θ has to be estimated from data. In a hypoth-
esis testing framework, (2.2) is a particular choice of tests for identifying
person/node j in an observed network of n nodes. For a test statistic, we
may consider the observed value of S(i, j) and thus

(2.3) 1− Fθ(s) = Prθ(S(i, j) > s)

as a choice for the p-value of the test under a particular setting for the
parameters of the score (similarity) distribution. Here lies the richness of
the problem: θ, for network models that are not completely random (i.e.
models other than the ER graphs), includes the labellings — orderings — of
the nodes in the graph. This means that the observed data must be used to
estimate node labels — observation 1 is node i, observation 2 is node i+ 1,
say — concurrently with similarity scoring. For non-random models, in fact,
the distributions of this scoring statistic (2.1) are completely dependent
upon the choice of labels, which we properly consider as additional model
parameters.

For the match score distribution this distinction is trivial: the observed
scoring statistic is merely the observed degree of the node and re-identification
is null. We attack the problem for the non-match score distributions from
first principles: we generate the distributions via the algorithmic construc-
tions of the network models and then consider hypothesis tests for re-
identification that allow us to elide the dependency between labellings and
non-match scoring.

3. Score Distributions. We consider three well known network struc-
tures — ER, small-world, and scale-free. For each structure, we derive its
non-match score distribution by simply following the algorithmic construc-
tions of the family Gθ that generate each type of model.

3.1. Erdös-Rényi Networks. An ER network is constructed by indepen-
dently placing edges with probability p among n nodes. Each pair of nodes
is considered once and an edge is placed between them with probability
p, yielding

(
n
2

)
independent Bernoulli trials. To derive the non-match score

distribution for nodes i and j,i 6= j , we consider this construction. No-
tice, first, that each scalar product in the dot product via the score can be



STATISTICS FOR RE-IDENTIFICATION IN NETWORK MODELS 7

viewed as a Bernoulli trial. Each scalar product is between two elements of
the adjacency matrix, resulting in scalar products equal to either a 0 or 1.
The probability of success for each of these “trials” is P {ai,i∗ · aj,i∗ = 1} =
P {ai,i∗ = aj,i∗ = 1} when testing if nodes i and j share an edge with node i∗.
Therefore, the score distribution, both match and non-match, is the sum of
Bernoulli random variables. For Erdös-Renýı networks, these random vari-
ables are independent and identically distributed. The other two networks,
SW and SF, don’t have this accommodating property.

The probability that nodes i and j share a common edge i∗,
i∗ ∈ {1, . . . , n} \ {i, j}, is

P {ai,i∗ = aj,i∗ = 1} = P {ai,i∗ = 1}P {aj,i∗ = 1} = p2

since the two connections are made independently with probability p. We
restrict node i∗ from equaling i and j because the network construction
doesn’t allow loops. Thus, ai,i = aj,j = 0 with probability 1, and the proba-
bility of interest stated above is always 0 for these two cases. The non-match
score distribution is, therefore, S(i, j) ∼ Bin(n−2, p2). Plots of the empirical
match and non-match score distributions along with the theoretical distri-
butions derived above are shown in figure 1.

Non−match score with p=.1, n=1000

F
re

qu
en

cy

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

0.
12

Non−match score with p=.4, n=1000

F
re

qu
en

cy

120 140 160 180 200 220

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Non−match score with p=.6, n=1000

F
re

qu
en

cy

300 350 400

0.
00

0
0.

01
0

0.
02

0

Non−match score with p=.9, n=1000

F
re

qu
en

cy

740 760 780 800 820 840 860

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Fig 1. These plots show the fits (solid lines) of theoretical non-match score distributions
to empirical data (histograms) for Erdös-Rényi Networks of size n = 1000 with varying p.

3.2. Small-World Networks. Small-world networks, namely, those con-
structed by Watts and Strogatz, were developed to incorporate high levels
of clustering and small distances between most nodes–both properties found
in real world data. A family of small-world networks Gθ can be generated as a
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rewiring of a 2k connected lattice. As described in Watts and Strogatz Watts
and Strogatz (1998), the lattice is iteratively rewired with probability pa-
rameter p.

This characterization yields a limiting distribution for the non-match
score distribution. Consider the network generated from an initial, non-
rewired 2k connected lattice. Post rewiring, the probability that an edge
is shared by nodes i and j is dependent upon the following pre-rewiring
cases:

1. nodes i and j are both unconnected to node i∗, i.e., ai,i∗ = aj,i∗ = 0;
2. node i and j are both connected to node i∗, i.e., ai,i∗ = aj,i∗ = 1;
3. node i is connected to node i∗ and node j is unconnected from i∗, i.e.,
ai,i∗ = 1, and aj,i∗ = 0.

We denote the limiting distribution of P {ai,i∗ = aj,i∗ = 1} for each case by
fi, i = 1, 2, 3–the partial non-match score distributions. When computing the
overlap/similarity score S(i, j), each of case i = 1, 2, 3 may arise. The total
number of matching edges is the sum of the number of edges arising from
each case. Thus, we are interested in the distribution of Z = X1 +X2 +X3,
where X1, X2, X3 are random variables from distributions f1, f2, and f3,
respectively.

Consider case 1 first. Prior to rewiring, nodes i and j are unconnected
to node i∗. Denoting the lattice distance between nodes i and j by ||i, j||,
||i, i∗|| and ||j, i∗|| are both less than k. The number of times this case arises
is

n1 =


n− 2k − ||i, j|| − 1, if 1 ≤ ||i, j|| ≤ k
n− 2k − ||i, j||+ 1, if k < ||i, j|| ≤ 2k
n− 4k, if ||i, j|| > 2k
0, otherwise.

When calculating P {ai,i∗ = aj,i∗ = 1}, we first note by the independence of
the rewiring process,

P {ai,i∗ = aj,i∗ = 1} = P {ai,i∗ = 1}2 = P {aj,i∗ = 1}2 .

Now assume ai,i∗ = 0 pre-rewiring. Post rewiring ai,i∗ = 1 if: (i.) one of the
k edges considered for rewiring from node i is rewired to node i∗, or (ii.)
one of the k edges considered for rewiring from node i∗ is rewired to node
i. View the rewiring of the 2k edges as 2k independent Bernoulli trials with
success probability p/n, where a success is defined as a rewiring that results
in ai,i∗=1. Let X denote the number of success, i.e., X ∼ Bin(2k, p/n).
Then,

P {ai,i∗ = 1} = P {X ≥ 1} = 1− P {X = 0} = 1− (1− p/n)2k,
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implying P {ai,i∗ = aj,i∗ = 1} = (1− (1− p/n)2k)2. Note, we do not need to
address whether or not node i or i∗ is rewired first by assuming the possibility
of multigraphs. The limiting distribution of the partial non-match score is
completely specified as

f1 ∼ Bin(n1, [1− (1− p/n)2k]2).

In case 2, nodes i and j are connected to node i∗, i.e., ||i, i∗|| and ||j, i∗||
are both less than k. This case occurs

n2 =


2k − ||i, j|| − 1, if 1 ≤ ||i, j|| ≤ k
2k − ||i, j||+ 1, if k < ||i, j|| ≤ 2k
0, otherwise

times. Post rewiring, ai,i∗ = 0 if edge (i, i∗) is removed and not replaced while
none of the 2k−1 edges remaining for rewiring connect nodes i and i∗. Edge
(i, i∗) is removed and not replaced with probability p(n−1n ), while none of the
2k−1 edges is rewired forming edge (i, i∗) with probability P {Y = 0}, where
Y ∼ Bin(2k − 1, p/n). Post rewiring, P {ai,i∗ = 0} = p(n−1n )(1 − p/n)2k−1

implying P {ai,i∗ = 1} = 1 − p(n−1n )(1 − p/n)2k−1. The partial non-match
score distribution is

f2 ∼ Bin(n2, [1− p(
n− 1

n
)(1− p/n)2k−1]2).

The number of occurrences of the last case, when ||i, i∗|| > k and ||i, i∗|| ≤
k, or vice versa, is

n3 =


2||i, j||+ 2, if 1 ≤ ||i, j|| ≤ k
2||i, j|| − 2, if k < ||i, j|| ≤ 2k
4k, if ||i, j|| > 2k
0, otherwise.

Without loss of generality, assume ||i, i∗|| > k and ||j, i∗|| ≤ k. After the
rewiring process, we have P {ai,i∗ = 1} = 1 − p(n−1n )(1 − p/n)2k−1, and
P {aj,i∗ = 1} = 1− (1−p/n)2k. The product of these two probabilities is the
probability of nodes i and j both being connected to node i∗. The partial
non-match score distribution is

f3 ∼ Bin(n3, [1− p(
n− 1

n
)(1− p/n)2k−1][1− (1− p/n)2k]).
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The complete non-match score distribution is found by taking the convo-
lution of f1, f2, and f3. In particular,

S(i, j)
d
=

z∑
y=0

f3(z − y)

y∑
x=0

f1(x)f2(y − x)

=

z∑
y=0

(
n3
z − y

)
py−z3 (1− p3)n3−(z−y)I {z − y ≤ n3}

×
y∑

x=0

(
n1
x

)
px1(1− p1)n1−xI {x ≤ n1}

×
(

n2
y − x

)
py−x2 (1− p2)n2−(y−x)I {y − x ≤ n2} ,

where p1, p1, and p3 are the probabilities of success for f1, f2, and f3, re-
spectively. Figure 2 shows plots of empirical histograms against the theoret-
ical distributions derived above.
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Fig 2. These plots show empirical histograms of the match and non-match score distri-
butions for the small-world networks of Watts and Strogatz along with the theoretical fits.
The sample size, rewiring probability, and initial connectivity are n = 1000, p = 0.1, and
k = 5, respectively.

3.3. Scale-Free Networks. Scale-free networks are networks whose degree
distribution follows a power law. Barabási and Albert (1999) provided a
method of constructing scale-free networks based on growth and preferential
attachment, however, their description is imprecise. Bollobás and Riordan
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(2004) remedy this issue by precisely specifying the model of Barabási and
Albert.

Denote a network with of size n–or equivalently, the network at time
n = t–by Gm,n, where m is the number of edges introduced at each time
step. The construction follows. Start with an initial network, G1,1, with one
vertex and one loop. Let dn,i denote the degree of node i when the size of
the network is n. At each time step add node n together with a single edge
between nodes n and i, where i is randomly chosen with

P(i = s) =

{
dn−1,s/(2n− 1), 1 ≤ s ≤ n− 1
1/(2n− 1), s = n.

Each entering vertex is connected to an existing vertex proportional to its
degree. We will denote the case when the entering node j is attached to
existing node i by hj = i. Note, when node n enters, it has degree one
before being connected to an additional node. The authors generalize this
construction to addingm ≥ 1 edges at each time step. Each edge is connected
to an existing node one at a time taking into account the degrees added after
each connection. In this case, node n has degree m when it enters.

For the non-match score distribution, we first consider the base case when
m = 1, for each case where m > 1 is derived from this base case. An im-
portant distinction between the scale-free network model and the two pre-
viously considered models is that the preferential attachment scheme intro-
duces a dependency between whether or not two nodes share an edge. Where
P {ai,i∗ = aj,i∗ = 1} = P {ai,i∗ = 1}P {aj,i∗ = 1} for the ER and small-world
network models, here the independence assumption does not hold. In par-
ticular, these probabilities are dependent upon the order of the addition of
the node in the wiring algorithm.

When calculating the probability that nodes j and k are both connected
to node i, i.e., P {aj,i = 1, ak,i = 1}, we have to consider the following four
orderings of nodes i, j, and k:

• 1 ≤ i < j < k
• 1 ≤ i = j < k
• 1 ≤ j < i < k
• 1 ≤ j < k < i

We first note that the last case is irrelevant when m = 1 because only one
edge is connected from node i; i cannot be connected to both nodes j and
k. This case is relevant, however, when m > 1. Following in the footsteps
of Bollobás and Riordan — i.e., by conditioning on the network at previous
time steps–for each case, we derive the following success probabilities. When
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1 ≤ i < j < k,

P {ai,j = 1, ai,k = 1} =
4i+ 2

(2k − 1)(4i2 − 1)

k−1∏
s=j+1

(
2s

2s− 1
)

=

(
4i+ 2

(2k − 1)(4i2 − 1)

)(
4k−j−1(k − 1)!2(2j)!

(2k − 2)!(j)!2

)
.

When 1 ≤ i = j < k, we get the following probability:

P {ai,j = 1, ai,k = 1} =
2

(2i− 1)(2k − 1)

k−1∏
s=i+1

(
2s

2s− 1
)

=

(
2

(2i− 1)(2k − 1)

)(
4k−i−1(k − 1)!2(2i)!

(2k − 2)!(i)!2

)
.

Lastly, when 1 ≤ j < i < k, by modifying the work of Bollobás and Riordan,
we calculate

P {ai,j = 1, ai,k = 1} =
1

(2i)(2k − 1)

k−1∏
s=j

(
2s

2s− 1

)

=
1

(2i)(2k − 1)

(
4k−j(k − 1)!2(2j − 2)!

(2k − 2)!(j − 1)!2

)
.

Let Xi
j,k denote the Bernoulli random variable with success probability

pij,k := P {ai,j = 1, ai,k = 1} , i.e., the random variable representing whether
or not nodes j and k are both connected to node i. The non-match score
distribution is the sum of these random variables from i = 1, . . . , k − 1 for
i 6= j. Unlike in the small-world scenario, these Bernoulli random variables
are dependent, where the dependence arises not from the preferential at-
tachment, but from the parameter m which restricts the maximum value
of the overlap score. In the case we are considering, m = 1, the overlap
score is restricted to be a Bernoulli random variable. Denote this random
variable, the non-match score, by Z =

∑k−1
i=1 X

i
j,k, assuming the k > j. The

probability of success is

P {Z = 1} = E

[
k−1∑
i=1

Xi
j,k

]
=

k−1∑
i=1

pij,k,

yielding a final non-match score distribution of

P {S(i, j) = s} =

{
1−

∑k−1
i=1 p

i
j,k, if s = 0∑k−1

i=1 p
i
j,k, if s = 1.
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We have only considered the case when m = 1. In principle, similar logic
will lead us to distributions for arbitrary m, but the actually derivations for
m > 1 rapidly increase in difficulty, leaving the appropriate distributions to
be calculated empirically via simulations.

4. Parameter Estimation. Complications arise in parameter estima-
tion in network data due to the dependent nature of the data. In particular,
the dependence among the degrees of each node makes finding likelihood
distributions difficult since the likelihood is no longer the product of the
marginal distributions. For the ER network model, estimating its sole pa-
rameter p is not burdensome, yet developing estimators in WS and SF net-
work models poses some complications.

See McKay and Wormald (1997) for a conversation about of the depen-
dency of the degrees in an Erdös-Rényi network. Other styles of estima-
tors, such as Horvitz-Thompson estimators, heavily depend on the sampling
schemes to estimate certain parameters along with the accuracy of each
estimate. See chapter 5 of Kolaczyk (2009) for illustrations.

4.1. Estimation in Erdös-Rényi networks. A family of Erdös-Rényi net-
works with known order n, along with the match and non-match scores
distributions are completely characterized by parameter p. Let E denote the
total number of edges in the observed network. Unlike the other two network
models, this is observable quantity is random. Since the placement of each
edge is independent of the placement of all other edges and the probability
of placing each edge is identical, the total number of edges in an ER network
is simply a binomial random variable with

(
n
2

)
trials and success probability

p, reducing the parameter estimation in ER networks to estimation for a
binomial random variable. In particular, the maximum likelihood estimate
of p is p̂ = Eobs

(n2)
, where Eobs is the observed number of edges. For this simple

model, we have the luxury of knowing statistical properties of this estimator,
i.e., limiting distribution, while as for the other network models, properties
of their estimators are analytically elusive due to complex dependencies in
the data.

4.2. Estimation in small-world networks. For the small-world network
construction we consider, the parameter to estimate in order to completely
specify Gθ is θ = (k, p). To get around the dependency in the data, we
consider estimates of k and p based on the method of moments. Barrat and
Weigt (2000) showed that the mean behavior of the degree of any particular
node is 2k, i.e., E[di] = 2k. It is easy to see this relationship without the
technical derivations. Noting that E[d̄] = E[di], the method of moments
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estimator of k is k̂ = d̄/2, where d̄ is the observed average degree. To estimate
p, we consider the total number of triads centered at node i, denoted ti. Our
definition of a triad centered at node i is a subnetwork consisting of 3 nodes
connected by two edges with the degree of node i equal to 2. Let tfixedi and
tvari be the number of triads centered at i that always exist and the number
of triads centered at i that vary based on the rewiring process, respectively.
Additionally, let Xi be a random variable denoting the number of edges that
are connected to node i initially that are not rewired to a different edge and
Yi denote the number of edges that are not initially connected to node i that
are rewired to node i. Then, Xi ∼ Bin(k, 1−p) and Yi ∼ Bin((n−2)k, p/n).
Then we have

E[ti] = E[tfixedi ] + E[tvari ]

= E[tfixedi ] +
k∑
a=1

(n−2)k∑
b=1

E[tvari |Xi = a, Yi = b]P[Xi = a, Yi = b]

= E[tfixedi ] +

k∑
a=1

(n−2)k∑
b=1

E[tvari |Xi = a, Yi = b]P[Xi = a]P[Yi = b]

=

2k−1∑
l=1

l +

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +

a+b−1∑
c=1

c

P[Xi = a]P[Yi = b]

=
k(k − 1)

2
+

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +
(a+ b)(a+ b− 1)

2


×P[Xi = a]P[Yi = b],

where

P[Xi = a] =

(
k

a

)
pa(1− p)k−aI {a ≤ k}

and

P[Yi = b] =

(
(n− 2)k

b

)( p
n

)b (
1− p

n

)(n−2)k−b
I {b ≤ (n− 2)k}

The total expected number of triad, ttot =
∑n

i=1 ti = n ∗ ti, is

E[ttot] = n
k(k − 1)

2

+ n

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +
(a+ b)(a+ b− 1)

2

P[Xi = a]P[Yi = b].
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To estimate p, plug k̂ into the above equation as well as replace E[ttot] with
the observed total number of triads which we denote by tobs. Analytically
solving the resulting equation is quite cumbersome, however, numerical so-
lutions are very easy to come by. The estimate of p is:

p̂ = arg min
0≤p≤1

{∣∣∣∣∣tobstot −
(
n
k(k − 1)

2
+ n

(
k∑
a=1

(n−2)k∑
b=1

(a+ b)k

+
(a+ b)(a+ b− 1)

2

)
× P[Xi = a]P[Yi = b]

)∣∣∣∣∣
}
.

Barrat and Weigt (2000) also argue that the mean behavior of the cluster-
ing coefficient–the ratio of the mean number of links between the neighbors
of a vertex and the mean number of possible links between the neighbors of
a vertex–asymptotically behaves like

cc =
3(k − 1)

2(2k − 1)
(1− p)3.

We can use this asymptotic identity to estimate p, but it must be noted that
the resulting estimator serves as an approximate method of moments esti-
mator since terms of order 1/n are ignored. We propose the above estimator
for its specificity.

We must emphasize that the non-match score distribution for each pair of
nodes (i, j) is dependent on the lattice distance between the nodes through
the parameters n1, n2, and n3, meaning to properly specify the non-match
score distribution, we essentially need the labels of the nodes. To the best of
our knowledge, we don’t know of any algorithm that will accurately estimate
the node labels, and in fact, discovering the labels from an unlabeled graph
may be an infeasible task with out any additional information. If we know
the labels, then we can just apply the methodology to the above non-match
score distribution, while on the other hand, when we have no knowledge of
the node labels, we view the data–the non-match scores–as coming from a
mixture distribution which can replace the non-match score distribution in
our methodology. Formally, consider s1, . . . , sbn/2c, where si denotes the non-
match score distribution for two nodes distance i apart. Let α1, . . . , αbn/2c ∈
R be the mixing parameters such that 0 ≤ αi ≤ 1 for all i and

∑bn/2c
i=1 αi = 1.

The mixture distribution is

fmix =

bn/2c∑
i=1

αisi.
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The αi’s are actually known, so we are not introducing any additional pa-
rameters, leaving only p and k to be estimated as before. For instance, if n
is even, αi = 2

n−1 for i = 1, . . . , bn/2c − 1 and αbn/2c = 1
n−1 .

Adopting the mixture distribution yields less power in the statistical
tests for detecting an anomalous event–the event that two nodes have too
many common neighbors–yet reduces the risk of type I error for the re-
identification problem. This result is not a problem, however, since the re-
identification problem is not to detect all anomalous event but the event that
two nodes have the same behavior. For example, consider a WS network with
n = 200 and k = 7. Two nodes, i and j, that are at opposite ends of the
lattice, i.e., ||i, j|| = bn/2c, will be concluded to represent the same identity
using the non-match score distribution sbn/2c for an non-match score of 2.
On average, however, nodes will have 14 neighbors (see section 4.2), so we
don’t want to conclude that two nodes have the same signature when they
have only two common neighbors.

4.3. Estimation in scale-free networks. The scale-free model considered
here has only one parameter to be estimated, m. We only consider the case
when m = 1, so no estimation is needed to characterize the family of scale
free networks that we consider here. If we observe data and need to estimate
m, contrary results arise. There are two methods for finding m: taking m as
the minimum degree and using the total number of edges to find m. This
network construction always gives a network withmn edges. Many real world
networks will have a node with degree 1 at some point in its construction, yet
the network will almost always have more than n edges. This complication
in parameter estimating m stems from the highly simplistic nature of the
model.

Similar to the WS model, the non-match score distributions depend on
the labellings of the nodes–the time stamp when node enters the network
in opposition to the positioning around a lattice. At a first glance, one may
think that the preferential attachment characteristic would give the order in
which the nodes enter–hence the labeling–since earlier nodes will typically
have a higher degree than nodes that enter the network at a later time, yet
this result is the case. Consider this likely scenario. When the fourth node
enters into the network, suppose the degrees of nodes 1, 2, and 3 are 4, 1, and
1, respectively, the event that nodes 2 and 3 both connect to node 1. Node
4 is just as likely to attach to node 2 as it is to node 3, and if its edge links
to node 3, than node 3 will have a higher ‘preference’ than node 2, likely to
result in node three having a larger degree than node 2. Similar scenarios will
play out as the network grows, and the likelihood that the node time stamps
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will be the same as the labeling induced from the ordered degrees is very
small. As a result, developing even a consistent estimate for the labellings
is likely impossible, where consistency here refers to asymptotic properties
resulting from an infinite network.

Once again, we will consider a mixture distribution to eradicate the neces-
sity of node labels. Let si,j denotes the non-match score distribution for two
nodes, i and j. Let αi,j ∈ R be the mixing parameters such that 0 ≤ αi,j ≤ 1
for all (i, j) and

∑
all i,j αi,j = 1. The mixture distribution is

fmix =
∑
all i,j

αi,jsi,j ,

where αi,j = 1

(n2)
for all (i, j).

5. Hypothesis Testing. A single hypothesis test H0 : σ(i) 6= σ(j) vs.
Ha : σ(i) = σ(j) is straightforward to perform, yet may not be very relevant
to the re-identification problem since the knowledge of which two nodes to
test is elusive. Instead, multitudes of hypothesis tests need to be performed,
resulting in the need for a multiple testing procedure. The multiple testing
procedure we choose to use is based on controlling the false discovery rate
(FDR) using methods proposed by Benjamini and Hochberg (1995) and
extended by Benjamini and Yekutieli (2001). Recall,

FDR = E
(
Rfalse
R
|R > 0

)
,

where R is the number of rejections among m tests and Rfalse is the number
of false rejections. Controlling the FDR has advantages when considering
applications of re-identification. In context of fraud detection, a company
wants to minimize the number of false discoveries–the claim that a user is
committing fraud when in fact is not–so as to not have to wrongfully accuse
customers of fraud and to reduce the amount of time that a company rep-
resentative has to investigate false fraud claims. The Benjamini-Hochberg
procedure for controlling the significance level at γ is as follows: calculate the
p-values for each of the m tests giving p1, . . . , pm; order the p-values giving
p(1), . . . , p(m); define k = max

{
i : p(i) ≤ ( i

m)γ
}

; and reject H0
(1), . . . ,H

0
(k). In

their work, they show that the FDR will be controlled at the level γ for inde-
pendent hypothesis tests. The tests we are considering are not independent
but have an ambiguous dependence inherited from each construction algo-
rithm. Consider an ER network with the extreme case that two nodes i and j
have an overlap score of n−2, i.e., each node is connected to every other node.
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The overlap score for node i∗ and i is at least one less than the degree of i∗.
It is clear that a dependence in the test statistics exist, yet the nature of the
dependency is not well understood, leaving creating network specific tests
to control the FDR as a highly arduous task. Benjamini and Yeuketieli, pro-
vide a method that allows for any general dependence amongst hypothesis
tests. In particular, they show that by changing the definition of k as defined

in the Benjamini-Hochberg procedure to k = max

{
i : p(i) ≤ i

m(
∑m

i=1 1/i)
q

}
,

the FDR will be controlled at a level less than or equal to m0
m q, where m0

is the number of true null hypothesis. The generality of the multiple test-
ing offered by Benjamini-Yeuketieli procedure makes it an attractive testing
procedure for the unknown dependence structure inherited by the network
constructions.

6. Simulation Results. We first illustrate how our methodology for
each network through simulations. For each construction, we simulate a net-
work of size n = 1000 with specified parameter θ and measure performance
based on the false positive rate (FPR) and the true positive rate (TPR). We
replicate each network 100 times and average the FPR and TPR for a more
accurate evaluation.

For ER networks, we vary p over the set {.2, .5, .8}, and for the WS net-
works, we study the cases that were highlighted in the seminal work of Watts
and Strogatz (1998). In particular, we fix k = 5 and vary p over the set
{.001, .01, .1}. The results are shown below.

Erdös-Rényi Networks
n = 1000, p = .2 FPR=0.00615; TPR=1

n = 1000, p = .5 FPR=0.00501; TPR=1

n = 1000, p = .8 FPR=0.00570; TPR=1

Watts-Strogatz Networks
n = 1000, k = 5, p = .001 FPR=0.00100; TPR=0.99996

n = 1000, k = 5, p = .01 FPR=0.00108; TPR=0.99894

n = 1000, k = 5, p = .1 FPR=0.00082; TPR=0.94882

Each method performs very well, with the TPR of the ER networks slightly
higher than in the WS networks. This result is due to the fact that the clus-
tering coefficient–thus, the propensity for two nodes to have more neighbors
in common–in WS networks is higher than that of ER networks. However,
even with the high clustering, our method performs very well for WS net-
works.

For the SF network, we ran simulations form = 1, the case that we derived
exactly. Our framework has trouble correctly identifying nodes representing
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the same signature–with the TPR ≈ .5–due to the SF network property that
many nodes will simply have degree m. For a small value of m, especially
for m = 1, we know very little information about many nodes, making it
hard to ‘re-identify’ it.

7. Applications. We apply our methodology to two publicly available
datasets: the Reality Mining Group at MIT which was introduced by Ea-
gle and Pentland (2006) and the infamous Enron email dataset. Since each
dataset doesn’t have fraudulent activity in the form of two nodes represent-
ing the same entity, we treat each match score, i.e., the comparison of a
node with itself, as a non-match score. After estimating the parameters, a
decision needs to be made on which model is actually provides the best fit.
Goodness-of-fit (GOF) has been addressed by Hunter, Goodreau and Hand-
cock (2008) who offer a graphical procedure for GOF by plotting simulated
distributions of the degree, edge-wise shared neighbors, and mean geodesic
distance against the observed distributions for a given network dataset. The-
oretical results for GOF and model selection procedures are uncharted due
to the dependencies in the data which make traditional chi-square GOF tests
and AIC and BIC model selection procedures irrelevant. We provide a brief
discussion for each dataset on which model we feel is most appropriate.

7.1. Reality Mining Dataset. The Reality Mining dataset consists of 100
subjects–faculty and undergraduate and graduate students from MIT–whose
telephone calls were being tracked. We consider a restricted dataset by only
considering in-network calls and removing all loops, multiple edges, and
isolated nodes, resulting in a network with 72 phone users. A plot of the
network is show in Figure 3.

The table below shows the parameter estimates for each of the network
constructions along its associated FPR and TPR.

Erdös-Rényi p = .0411 TPR=.4167, FPR=.00469

Watts-Strogatz p = .9326, k = 1 TPR=.4167, FPR=.00469

Barabási-Albert m = 1 TPR=.7083, FPR=.02152

Notice for the WS model, p is estimated to be close to 1, giving a highly
random network that is essentially an imitation of an ER network. As a
result, the ER and WS models yield the same performance based on the
FPR and TPR. The performance for the SF network seems to be the best,
but this performance is due to a model misspecification which leads to the
rejection of the null hypothesis whenever two nodes have an overlap score
greater than 1. One of the criterion for GOF proposed by Hunter et al is
the edge-wise shared neighbors, which is similar to our overlap score. Based
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Fig 3. This plot shows the call patterns in the restricted Reality Mining dataset.

on this criterion, it is clear that the SF model is not an appropriate model
since the many pairs of nodes have an overlap score greater than 1 which
occurs with probability zero under the assumed model. None of the models
performs adequately, which is due to the simplistic nature of the ER model
and the rigidity of the WS and SF models.

7.2. Enron Emails. The Enron emails have been well studied in network
literature. The data we consider consists of emails sent between 144 top
executives, where multiple edges and loops have been removed. A plot of
the dataset is shown in Figure 4. The table below shows the parameter

Fig 4. This plot shows the email patterns of 144 top Enron executives.
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estimates for each of the network constructions along its associated FPR
and TPR.

Erdös-Rényi p = .1312 TPR=.8690, FPR=.1312

Watts-Strogatz p = .7480, k = 9 TPR=.0069, FPR=0

Barabási-Albert m = 1 TPR=.9793, FPR=.5575

The ER model performs the best, as it is the best approximation of the
three network models. The WS model inherits trouble through the estimate
of k = 9, when many nodes have degree less than 9. A WS model is restricted
in such a way that all of its nodes must have degree greater than or equal to
k. Similar to the Reality Mining dataset, the SF model is not appropriate
since many pairs of nodes have an overlap greater than 1. As a result, the
TPR is high at a cost of the FPR being high as well.

8. Discussion and Conclusions. In this paper, we have explored
three well known network models — ER, WS, and SF — in the context
of the re-identification problem by considering a precise statistical treat-
ment which has previously been ignored for WS and SF networks and only
approximately considered for ER models [Hill and Nagle (2009)].

This approach illustrates how statistical inference can conducted with
only an algorithmic recipe for the construction of a network model. In a
direct sense, this take suggests a sufficiency property for at least this (per-
haps trivial) version of a similarity score. The broader specification of these
physics-type network models as statistical objects is important:

Which network properties are ‘wiring’ algorithms sufficient for?
We have derived overlap-based similarity scores from standard ‘wiring’
procedures. Are these algorithms sufficient for other statistical func-
tions on networked data, for other interesting hypothesis settings?

What constitutes a unique ‘wiring’ algorithm? These network mod-
els overlap in that it is possible that an observed network could have
resulted through more than one algorithmic constructions, i.e., through
restrictions on the parameter spaces, for example, an ER network and
a WS network may be indistiguishable. In the same way that a char-
acteristic function completely defines the probability distribution of a
random variable, is there an analogue for these physics type models?

Estimation, Hypothesis Testing and Goodness of Fit: We have
offered straightforward, almost post hoc, methods for estimating the
network model parameters and testing the re-identification hypotheses.
Is there a framework that can be deduced from a proper statistical
specification of these models as random objects?
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In a sense, we can think of these questions as placing these (physics type)
models within a modeling framework. We comment that these models have
arisen in the literature in ignorance of their statistical specification; hypoth-
esis testing uses of these models in absence of this framework has relied on
ad hoc, empirical methods. We have demonstrated a straightforward statis-
tical characterization and illustrated its consequences for a version of the
re-identification problem.

In this paper we have had to work around the dependence structure in
these network models; principally because the observed degree distribution
for a network cannot be treated as an independent sample. In particular, we
have relied on parameter estimation and hypothesis testing procedures that
do not depend, directly, on the statistical likelihood. This loses the conve-
nience of asymptotic theory that maximum likelihood methods provide for
hypothesis testing, model selection, and inference on parameter estimation.

The simplicity of the ER model and the rigidity of the WS and SF models
complicates inference on real datasets. Although it is possible to estimate
parameters, the appropriateness of the networks may be limited, however,
as our understanding of networks through generative algorithms increases,
these procedures could be applied to better (statistical) specifications of
network models for more accurate inferences on real networked data.
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