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ABSTRACT 
We consider new methods of component extraction and identification for the Environmental 
Sustainability Index (ESI) – an aggregation of environmental variables created as a measure of overall 
progress towards environmental sustainability. Principally, we propose and illustrate a parametric version 
of Independent Component Analysis via Copulas (CICA). The CICA procedure yields a more coherent 
picture of the determinants of environmental sustainability. 
 
 
INTRODUCTION 
Shrinkage methods - statistical dimension reductions – are important and popular alternatives to 
numerical models in fields as diverse as climatology, psychology and econometrics. The objective in 
these methods is to identify a subset of coordinates that sufficiently describe the evolution of specific 
state variables. From an applied perspective, the goal is to identify (possibly lower dimension) versions of 
multivariate data via the extraction of salient characteristics. The data may then be recast, modulo 
these characteristics, as input to further modeling. From a theoretical perspective, the proposition of a 
method for dimension reduction depends upon the declaration of characteristics that can offer a sound 
basis for extraction.  
 
Breiman states – Statistics starts with data; improved methods can illustrate latent phenomena and 
uncover alternative metrics in extant data [Breiman 2001]. This statistical duality, the hysteretic iteration 
of statistical theory and data application, is especially instrumental in emerging fields where functional 
and causal representations are sparse. 
 
Social indexes, in particular environmental indexes, seek to describe as well as predict phenomena that 
are often poorly measured and ill-defined. An index is a metric, often at administrative levels, used to 
characterize a latent quality.  
 
Gross Domestic Product (GDP) and of the Dow Jones indexes are common economic indices; Pacific 
Decadal Oscillation (PDO) and El Nino ([Francis 1998], [Gershunov1998]), climatological indices; the 
National Threat Level could also be called an index. Example environmental indices are the Natural 
Disaster Hotspots report [CHRR-World Bank 2005]; the Human and Ecosystems Wellbeing Indexes - 
(HWI) and (EWI) [Prescott-Allen 2001]; and the United Nations Human Development Index - (HDI) 
[UNDP 2006].  
 



 2 

A goal for these environmental indices is the extraction of salient, perhaps latent, characteristics that 
describe or predict the elusive and undefined sustainability concept. A fortiori, the identification of as yet 
unmeasured information can illustrate the appropriate experimental design and thus guide future 
measurement (See Fuentes et al. [2007] for a creative example using Bernardo's [1979] fundamental 
comment on information maximization as a criteria). 
 
Independent Component Analysis (ICA) - and the special case Principal Component Analysis (PCA) - 
extract uncorrelated and statistically independent components - or bases - of multivariate data. In ICA the 
model is explicit - the observed data are mixed independent sources; in PCA, implicitly, the data are 
mixed multivariate Gaussian. These component analysis procedures are used to reduce dimension – by 
yielding a lower order basis – and to parse or elucidate latent factors.  
 
Environmental data are often non-Gaussian, and frequently – characteristically – extreme value [Meyers 
and Ganipati 2006]. Researchers apply an array of approaches: from spatial-temporal processes [Stein 
2007], to stochastic optimization [Tsai and Chen 2004], and hierarchical models [Lin, Gelman, Price,and 
Krantz 1999]. Environmental statisticians rely upon a suite of statistical methodologies as the underlying 
processes are complex (as in transport phenomena), multiple (as in wastewater treatment), or latent (as in 
ecology). Environmental statisticians face particular challenges in modeling environmental processes; 
these are typically ‘out-of-control’ and require more sophisticated assumptions. 
 
While the concept of sustainability has been widely embraced, it has been defined only vaguely and has 
proven difficult to measure with any consensus. There is a critical need for sustainability indicators; 
environmental statisticians have a stake in making the broad concept of sustainability operational. 
Researchers can justify an increased focus by providing specific measures – which decision makers can 
use and the public can judge – of progress or failure.  
 
In this chapter we illustrate the 2002 Environmental Sustainability Index and exploit its dependency 
structure using a new version of ICA – Copula Based Component Analysis (CICA) – to extract a reduced 
component set as the determinants of environmental sustainability. This approach is designed to highlight 
important information, suggest some focal metrics, and discredit others. 
 
A unifying definition for an index, in the context of this paper: a function that maps disparate multivariate 
data onto a scalar at administrative units. An index should be: 

I. Transparent: The methodology use to construct the index should be clear and unambiguous. 
Assumptions and decisions that affect index values (`scoring’) should be well stated. 

II. Reproducible: The algorithm or method used to generate the index – the list of scores and ranks 
for a set of administrative units – should be replicable on similar data.  

III. Defensible: The elements and variables of the index should map to concepts the index claims to 
measure.  

 
 
THE 2002 ENVIRONMENTAL SUSTAINABILITY INDEX (ESI) 
 
The 2002 Environmental Sustainability Index (ESI) was created as a measure of overall progress towards 
environmental sustainability and designed to permit systematic and quantitative comparison between 
nations [World Economic Forum 2002]. The ESI is a scaled linear combination of 64 variables of 
environmental concern. Environmental measures (such as oxide emissions and concentration) are 
included along with political indicators relevant (such as civil liberty and level of corruption) that are 
relevant to environmental sustainability [World Economic Forum 2001, 2002]. 
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The 2002 ESI is defined as: 
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Here: Jk is the index set for the variables in the kth `indicator' of the ESI: the ESI is averaged over the 
`indicators'; the ESI `components' are a heuristic grouping, not used in calculating the index;  K  is the 
index set for the indicators;  |K |  and | Jk |are the number of indicators and number of variables in the kth 
indicator; Yj is the sample mean for variable j – across countries, Syj is the sample standard deviation for 

variable j, Φ  is the inverse standard normal distribution function. See Table 1. 
 
Environmental Systems  (13 variables) Measurements on the state of natural stocks such as air, soil, and 
water 
Environmental Stresses (15 variables) Measurements on the stress on ecosystems such as pollution and 
deforestation. 
Vulnerability (5 variables) Measurements on basic needs such as health, nutrition, and mortality. 
Capacity (18 variables) Measurements of social and economic variables such as corruption and liberty, 
energy consumption, and schooling rate. 
Stewardship (13 variables) Measurements of global cooperation such as treaty participation and 
compliance. 
Table 1: Components of the 2002 Environmental Sustainability Index 
 
The ESI, like other indices of environmental concern (such as the environmental wellbeing index (EWI), 
and the human development index (HDI)) condenses dissimilar social and physical metrics into cohesive 
summaries for national level comparisons [Prescott-Allen 2001, Osberg 2002]. The goal for the ESI is to 
capture the most recent version of available data to get the best, most recent, snapshot. The approach is to 
use the most recent year available for each variable at each country. 
 
The breadth of the ESI - 64 dissimilar variables from varied sources - presents aggregation and processing 
challenges: in particular missing values (missingness) and complex dependencies. Some variables are 
composites of information from several sources: pollutant yield divided by land area conditioned on 
population density, for variables in the `Environmental Systems' and `Environmental Stresses' indicators - 
for example. Others may be imprecise across observations: mortality and disease variables in the 
`Vulnerability' indicator, for instance. See Annex 1 and Annex 2 of the 2002 ESI report for elucidation 
[World Economic Forum 2002]. 
 
Constructing the ESI using only available cases would have severely restricted its scope; yet it was 
important to have a reasonability check for the imputations, In Abayomi [2008] we look at the fit of a 
chained equation imputation model to the completed data and we suggested post hoc diagnostics designed 
to account for inconsistency and missingness in multivariate data collected from multiple sources.  
 
The ESI was calculated, using the equation in (1), on the completed – post-imputation – data.  The use of 
the inverse standard normal distribution in (1) guaranteed scores on the range 0-100; scaling each variable 
by its sample standard deviation set the contribution of each in deviation units; combining variables in 
groups before average allowed each component to have equal contribution to the overall score. Generally, 
countries with higher GDP scored higher in the ESI – though the relationship is not perfect. For example, 
the United States scored lower than Canada, and China scored lower than Australia. 
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An illustration of the final, completed data ESI is in Figure 1. 
 

 
 
 
Figure 1: The 2002 ESI. Darker color indicated a higher, more ‘sustainable score on the index. Canada 
and Norway, for example, are more ‘sustainable’ than China or the United States. 
 
CICA FOR DETERMINANTS OF ENVIRONMENTAL SUSTAINABILITY 
The Component Analysis Procedure 
Given multivariate data xk , the goal in Principal Component Analysis (PCA) is to find the linear 
transformation (i.e. rotation matrix), y = Bx , that minimizes the off-diagonal variance of y . When 
Σ = ((Cov(yi , yj )))i, j=1..k is the covariance matrix of xk  the very well known result is to generate the 

Eigenvectors for Σ = etΛe :Λ is a diagonal matrix of Eigenvalues - which yields yi = e
tx , with 

Cov(y_i,y_j) = 0,  i ≠ j , or the rotation which yields linear independence (see Johnson and Wichern 
[1998] for a comprehensive take). 
 
Multivariate analysis via PCA is a venerable member of the statistical canon; PCA results are often 
intermediate steps in larger investigations where the component outputs may be inputs in standard 
predictor-response models or more generalized 'indices' of higher order measurements.  See Oja [1992], 
for example. 
 
In Independent Component Analysis (ICA) the minimization of off-diagonal variation in y is 
strengthened to statistical independence, beyond the second order condition. Here, the goal is to find the 
linear transformation (i.e. rotation matrix) of xk , y = Bx , such that the observed yi = bix are nonlinearly 
correlated (in the maximal correlation sense [see Hyvarinen 2001]) of yj = bjx ; here the model for 
statistical independence is explicit. The observed data are modeled as mixed outputs x = As , of 
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independent sources s . The columns of Y are the estimates of these independent components, or signals; 
which the rotation B is an estimate of A−1 . See Figure 2, a la Cardoso [1996]. 
 

 
Figure 2: Diagram of Independent Component Analysis (ICA) mixing and separating matrices.  
Typically, independent signals s are observed via unknown full rank rotation A as x . The ICA/BSS 
procedure yields 

 
y = s outputs as estimates of the independent signals. The distribution of the inputs and 

outputs should be proportional. 
 
Independent Component Analysis (ICA) can be cast as a generalization of the PCA program where more 
general versions of statistical independence succeed covariation and thus uncorrelatedness (Jutten and 
Herault [1991]). In both versions the objective is the recovery of the linear rotation A  of the independent 
signals,x . The difference is the characterization of statistical independence or contrast function, and the 
implicit or explicit distributional assumptions on the inputs (See Cardoso [1993], Brunel et al. [2005]). 
 
ICA extends independence beyond covariance. While zeroed covariation is sufficient for independence 
under the Gaussian assumption typically operant in PCA, when dependency is not appropriately captured 
by the second moment, covariance is an insufficient proxy for statistical independence. For a simple 
example, take functional dependency xi = h(x j ) = x j

2 , for example,  E (xi ) = 0 . Here $Cov(x_i,x_j) = 0$ 
though $x_i,x_j$ are completely statistically dependent. ICA can be seen as PCA under a more general 
contrast function, based on an alternate measure. In PCA we seek the linear rotation that minimizes 
covariance; in ICA we seek the rotation that minimizes, for example: entropy, mutual independence, 
higher order de-correlation, etc. (Cardoso [1996]). 
 
In the simplest ICA models - including Blind Signal Separation (BSS) - the number of signals is equal to 
the number of sources: the rotation matrix is of full rank. 
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The Copula Approach 
A copula is a multivariate distribution on marginal distribution functions --- a distribution function on a 
k − dimensional cube --- and holds the dependency of the full joint distribution. In illustration: take two 
random variables 
 
X1 ~ FX1 , X2 ~ FX2 .  
A copula is a function that takes the ‘grades' as arguments --- the pair (U,V ) are the ‘grades’ of (X1,X2 ) -
-- and returns a joint distribution function   
 
C(U,V ) = FX1 ,X2 ,  
with marginals FX1 ,FX2 . In a simple illustration, the Gumbel-Hougard copula --- 

Cθ (u,v) = (u + v −1) + (1− u)(1− v) * e
−θ ln(1−u ) ln(1−v)  --- is easily derived from the bivariate exponential 

distribution: Hθ (x, y) = 1− e
− x − e− y + e−(x+ y+θxy) . Notice if θ = 0 , then Cθ (u,v) = uv ...the 

independence copula. 
 
The copula families of multivariate distributions, those where a candidate joint distribution is evaluated 
on a set of univariate marginals, are functions from  I k to  I . As densities -- full derivatives -- copulas are 
the ratio of the joint density to the product of the univariate marginals (see Nelsen [1999]). In this sense 
the copula representation captures the dependence within x : the value of the copula is the proportion of 
dependence to full independence. This proportion is maximal when there is no gain to modelling a 
multivariate x ; each element xi , separately, is sufficient. This property, in particular, recommends the 
copulae family as a fertile point of departure for dependence models. 
 
We use parametric copulae families as estimators for the dependency in x  under broad dependence 
conditions. Specifically, the copula approach offers a generalized 'engine' for the contrast functions - 
measures of statistical dependence - which characterize ICA analysis. This yields a copula 
based version of Independent Component Analysis (CICA) - where we model and rotate dependency 
information in x via copulae families. 
 
This version - CICA - replaces non-parametric, higher order proxies for independence with parametric 
examples from the copula literature. This parametric modeling appeals:  

1) To the duality between information minimization within the component outputs and likelihood 
maximization for the rotated source model and  

2) To the partitioning of the full likelihood of the outputs into model fit and dependence 
minimization. 

 
Here, we can construct ICA via copula based measures of association on partite reductions of x - in direct 
analogy to the PCA via covariance matrix we can view the ICA procedures as orthogonalizations of 
higher order tensors to capture non-elliptical dependence. The flexibility of partite reduction allows us to 
suggest appropriate copula families for non-gaussian dependence pathologies - specifically extreme value, 
non-monotone and inhomogenous data - within a multivariate set. This is a consistent framework for fully 
parameterized ICA. 
 
 
Copulas in ICA 
The copula measure of dependency is defined via its density, on a multivariate x = (x1,..., xk ) ,as 
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dC(x) = dFx (x)
d∏ Fxi (xi )

          (2) 

is the multivariate copula density for x . Here dC(x)  is the full derivative of a distribution 
function which takes the marginal distributions Fx1 ,...,Fxk as its arguments. The copula distribution, then, 

is a distribution function on the space of the marginals to the unit hypercube, 
  (FX1 ,...FXk ) I k . 

 
The mutual information (see Kullback [1959]), for a multivariate X  with distribution function 
F(X)  is 
 

MI(x) ≡ d
Ω∫ F(x)log( dFX

d∏ FXi
)          (3)  

where Ω is the probability space for X . Using equation (2) above, this can be re-expressed as 
 

 MI(X) ≡ d
I k∫ Cθ (u)log(dCθ (u)) = MI(u) = E (log(dCθ (u)))      (4) 

  
When T ~ F,dF = f then −H (T ) = E ( f (T )log(T ))  is called the entropy for t  (see Ash 1965) and 
here, 

 MI(X) = −H (u) = d
I k∫ C(u)log(dC(u))         (5) 

The mutual information then --- as the expected value of the log of the copula density --- can be 
computed, or estimated, from a parametric copula. The mutual information then - as the expected value of 
the log of the copula density, can be computed, or estimated, from a parametric copula 
 
In the PCA/ICA literature, contrast functions are objective functions for source separation: let 
ψ (Y) = 0 imply Yi and Yj are independent ∀i ≠ j   --- then ψ is a particular contrast function. The 
minimization of functions of these types is the essence of the PCA/ICA algorithm. 
 
Essentially, this approach demonstrates a role for the copula as the apparatus for these contrast functions, 
which exploits its natural appearance in measures of association, here the mutual information, and as a 
model for dependence/independence. This is choosing the mutual information as the engine for the ICA 
contrast function. This is a special case the component analysis problem via minimization of a \ 
parametric probability distance. This yields symmetry with the principles of likelihood maximization and 
employs a decomposition of the Kullback-Liebler distance. 
 
Kullback-Liebler as dependence distance 
The Kullback-Liebler [Kullback 1959] divergence between two probability density functions f (t) and 
g(t)we notate 

 
K ( f ,g) = f

t∫ (t)log( f (t)
g(t)

)           (6) 

between two probability density functions, f (t) and g(t) . 
 
The mutual information is a special instance of the Kullback-Liebler (K-L) probability distance between 
independence and dependence. 
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If Xk is k − dimensional multivariate with density function dF  and marginal distributions 
dF1,...,dFk then  
 

 
K (dF, d

i=1

k

∏ Fi ) = MI(X)           (7) 

 
A classic property of (7) is its decomposability 
 

 K (y,s) = K (y,y*) + K (y*,s).          (8) 
with y*  a random vector with independent entries and margins distributed asY ; S  is an 
independent vector. 
 
In the component analysis procedure --- with y the outputs and S  the unobserved sources --- the 
total distance between the model and the outputs is decomposed into the deviation from 
independence of the outputs  K (Y,y

*)and the mismatch of the marginal distributions  K (Y
*,s) . 
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Setting u* = G(y*)  --- G our best estimate for the marginal distributions of y --- where y* is 
still a random, mutually independent vector with margins distributed equivalently with y .  
 
Thus, u* is independent with margins distributed as y . Then the KL distance is: 
 

  K (u,u) = K (u,u*) + K (u*,u)          (10)  
with  u the estimate of the true sources. 
 
The CICA algorithm: Full Model, via Estimating Equations 
This approach yields estimating equations, equations for the parameters of the component analysis model. 
In this full CICA method – we derive estimating equations for the mixing parameter B in the model 
Y = BX by minimizing the KL distance (i.e. maximizing the likelihood). 
 
Under fixed assumptions about the distribution of the sources, two terms are minimized: the true 
objective, the mutual information, expressed via the copula; the mismatch of the marginal distributions to 
the assumed distributions. 
 
Write the independence term as 
 

 minBMI(y;B) = minB E (log(dCΘ (u)))        (11) 
and the marginal fit term as 

minΘ[CΘ (u) − (
i=1

k

∏ ui )].          (12)  
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That is, minimize the mutual information via the copula via rotation B = Â−1 after minimizing the 
distance between parametric copula and independent marginals. Since A is invertible, the KL divergence 
is invariant; maximization of the model likelihood – under independence – is equivalent to minimizing 
equation (13), below. 
 

 
∂H(G(y))

∂A
=
∂

∂A
(−K (G*(y),G(y)))         (13) 

 
This is the same as maximizing the score, equation (14) 
 

 
∂L
∂B

= −
∂

∂B
K (q(·), q̂(·,B))          (14) 

 
via the marginal distributions 
 

  
∂L
∂B

= −
∂

∂B
K (u,u)           (15) 

using the copula model. The estimates for B are yielded by partial derivatives, or score maximization 
∂L / ∂B --- either through gradient descent or analytically. See Figure 3. 

 
Figure 3: Left Hand Panel: CICA model applied to Gumbel-Hougard dependency gradient; Right 
Hand Panel: Log Mean Integrated Squared Error (MISE) of typical ICA (fastICA) and CICA 
models. The first row are the source distributions, all non-normally distributed: S1 ~ (U(−1,1))

2 , 
S2 ~ Gumbel(0,1) , S3 ~ χ

2 . The second row are the `data' observed after a full rank rotation. The third 
row are the outputs - estimated sources. The data are plotted in dark gray; estimated density is 
superimposed in blue.(b) Log Mean Integrated Squared Error (MISE) of fastICA (see hyvarinen 1999) 
and CICA model applied to mixed Gaussian and Laplacian sources (via Gumbel-Hougard copula) -

S1 and S2 above. The MISE is n−1 (
n=1

N

∑ q(yn ) − q̂n (yn ))
2  as N  ranges from 10 to 10000. MISE for CICA 

is in blue, fastICA is in red. The y − axis is plotted on log scale to highlight the difference: the distance 

between the two curves is on the order O(n−1/5 ) . The CICA procedure has a marginally better error rate, 
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and less variability over (100) random draws at each sample size. The mean MISE curves are plotted in 
darker color. 
 
Unification of PCA/ICA via the Gaussian copula 
CICA, or ICA via the copula, yields a unifying framework in which PCA procedures can be cast. In the 
particular case of elliptical dependence we can write the density of the copula as 
 

dCΘ (u) = φ(
1
2
uTΣ−1u) = φ(t)          (16) 

with Θ = Σ the ‘scatter' matrix for multivariate xk , and where φ(T ) ~ o(t 2 ) . The Gaussian copula is a 
member of this family. In the full CICA procedure we minimize the expected log of the above via 
equation (11) for any copula expressed ‘dependency gradient'. 
 
It is direct to note that the PCA program is a special case --- the copula density matches the above, i.e. is 
Gaussian or elliptical --- where the marginal mismatch (equation (9)) is ignored. Alternately, note that 
PCA via singular value decomposition (SVD) is a quadratic optimization, consonant with the expression 
of the elliptical copula density. 
 
CICA then, via the Gaussian copula, is a generalization of PCA type procedures where Θ  is a more 
general non-linear space or `dependency gradient'. 
 
Lastly, note under ordinary ICA --- any transform of the margins is arbitrary and identifying the contrast 
gradient from the entropy is difficult. In CICA, via equation (9), the second term on the RHS is 
identifiable from the first term --- allowing for Gaussianity in the sources. 
 
The advantages of this approach over non-parametric component analysis models are:  

1) Flexible choice of non-linear transformations u . 
2) Superior convergence of parametric estimators and stability of parametric estimators on small 

datasets. 
3) Specification, ‘tuneability’ and interpretability of dependency.  

 
The main drawback of this method, especially on high dimension data, is the computational difficulty of 
the score maximization, equations (13) through (15).  This full algorithm requires a non-linear 
optimization procedure on the full dimension of the data simultaneously. 
 
 
The CICA algorithm: Partite Model, Determinants of the ESI 
Essentially, the full method is simultaneously minimizing the mutual information and marginal fits. In the 
fully parameterized setting, the joint entropy of the outputs is: 
 

 
H(u) = H

i=1

k

∑ (ui ) − I (u)          (17) 

 

and the full method is equivalent to the maximization of the above equation. Notice that 
 

H
i=1

k

∑ (ui )  is 

maximized when the ui are uniform - when the hypothesized marginal distributions for the components 
are well `fit'.  I (u) is minimized when the components are independent. 
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An alternate, though philosophically consonant, approach is to:  

1) Still exploit the empirical distribution, setting ui = F̂i
n (xi ) , treating the univariate marginals as 

observed or unparameterized, but… 
2) Fit copulas pairwise, say, and minimize  I (u)by diagonalization of a mutual information matrix 

 
MIΘ (Xi ,Xj ) = ((dCθij

(u)log(dCθij
(u))]) = ((MIθij ))       (18) 

 
This approach permits dependencies that may be restricted or inaccessible in many multivariate copulas, 
where the index sets for the dependence parameters must be hierarchical or nested (see Joe 1997, Simon 
1986). As well, the number of families of bivariate copula is much larger than the those for multivariate 
copula – as many bivariate copula cannot be extended into greater dimensions [Joe 1997]. Partite copula 
estimation, in this manner via bivariate pairs, models the k-independent marginal dependence without the 
restrictions inherent in k-independent full joint models, with the sacrifice that  I (u)  not estimated 
beyond the second order. 
 
Set y = RWx , with W a `whitening' matrix - the PCA transformation - and R the ICA transformation. 
This allows diagonalization of the final mutual information matrix via ordinary, quick, Singular Value 
Decomposition (SVD). The partite algorithm is: 
 

I. Compute Wx , the PCA output or whitened data. 
II. Estimate univariate distributions ui = F̂i

n (Wix) , vj = F̂j
n (Wix)  via the empirical CDF. 

III. Choose copula families at each bivariate pair: C(u) = ηθ1 ,θ2 (ηθ1 ,θ2
−1 (u) +ηθ1 ,θ2

−1 (v)) . 
IV. The bivariate mutual information, or, E(log(dC(ui ,vj ))) are the elements of the `scatter' matrix. 

V. Construct `scatter' matrix ΓCΘ
= ((Cθij

(ui ,uj )))i, j=1..k  

VI. Compute SVD of ΓCΘ
, λ1,...,λk  

VII. Yield yk = bkxk = rkwkxk  with yi ⊥ yj , \: ∀i, j  via CΘ  
 
When the bivariate copula are well fit: C

θ̂ij
→ MI(C

θ̂ij
) ≥ 0 for all i, j . Thus R = ((MI(C

θ̂ij
)))  is 

positive semi-definite, by exchangeability and the Singular Value Decomposition of R yields an 
orthogonal basis, with respect to the mutual information. 
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Figure 4: Upper panels: Plots of first three PCA components. Each ui = F̂i

n (xi ) ; the data as transformed 
by their empirical CDF's. Copulas are estimated, separately, on each bivariate pair. Lower panel: 3D Plot 
of PCA1 vs. PCA2 vs. PCA3 ; the bivariate plots are the planes in the 3D plot. The appearance of extreme 
dependence in the bivariate plots - figures (a) and (b) especially, is a feature of the imputation procedure. 
Compare these with the bivariate diagnostic plots in Abayomi et al. [2008]. 

 
The partite approach permits copula model selection at each index in the partitioned index set; we fit 

bivariate copula to the 
64
2







pairs. The candidate copulae at each pair are two-parameter extensions of 

Laplace type copulae, a subset of the Archimedean family for copulas (see Abayomi [2008a]). Two-
parameter families have the advantage of allowing multiple types of dependence, including some non-
monotone dependence. Archimedean copulas are exchangeable and have a direct generating function 
representation [Joe 1997]. These properties are attractive for this partite approach: we trade for model 
flexibility, in a sense, at each of the bivariate margins with a full model on the entire data.  
 
The exchangeability of the Archimedean family, with the non-negativity of the (copula) mutual 
information, yields a positive semi definite mutual information matrix ΓCΘ

 which can be orthogonalized 
via ordinary SVD methods. See Figure 5. 
 



 13 

 
Figure 5: Image plots of covariance and mutual information matrices of ESI data - both matrices scaled 
for comparison. Mutual information matrix calculated via copula on `whitened' (PCA output) data. Darker 
color indicates greater covariance/mutual information. Image plot of MI illustrates remaining 
variation/information. Histogram of MI reveals the same – PCA alone ignores remaining non-Gaussian 
information. The MI matrix features high information about the diagonal; this is supported by the 
proximate listing of similar variables in the ESI data. 
 
In analogy with the covariance/correlation matrix in a PCA procedure, we use the mutual information 
matrix ΓCΘ

- estimated via the bivariate copulae - as a representation of the multivariate scatter. In PCA 

the covariance for each bivariate is estimated via xTx ; in this version of CICA the mutual information 
for each bivariate is estimated via the copula density: 
 

d
n=1

n=142

∑ C
θ̂
(ui

n ,uj
n )log(dC

θ̂
(ui

n ,uj
n ))         (20) 

 
 
, where each ui = F̂i

n (wixi ) is the order statistic of the `whitened' data, W the `whitening' matrix. ICA 
methods typically optimize the mutual information, negentropy (distance from Gaussianity), or high order 
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sample moments (usually cumulant) via gradient descent or other iterative procedure. In this version of 
CICA we substitute the iterative optimization with SVD orthogonalization. 
 
Copulae at each pair are selected - separately - via maximum likelihood from bivariate two-parameter 
(Archimedian) Laplace families in Joe [1997]. Additionally, each copula model is rotated 0, 90, 180 or 
270 degrees.  
 

 
Figure 6: Scree plot [Catell 1966]: The y-axis is λi / λi

i
∑ , where λi the ith largest eigenvalue of the 

Singular Value Decomposition (SVD). The graph is an illustration of the `variation' explained up to the 
ith  component. The red line is the scree graph for PCA components on the ESI dataset; the blue line is for 
the CICA components. The area under each curve is the percentage of total 'variation' - then - at each 
component. Seven (7) components for the PCA and CICA graphs are, respectively, 57.6 and 68.3 of the 
total`variation'. 
 
The Scree plot in Figure 6 [Catell 1966] suggests that the majority of `variation' (68 percent) - as 
approximated by the cumulative eigenvalues of the SVD – is explained at about seven components.  This 
can be interpreted as an indicator that a majority of the variation – Gaussian as well as non-Gaussian, by 
the CICA procedure – in the ESI can be explained by a reduced amount of information. 
 
The factor loadings [Wherry1984] – the coefficient weights the CICA rotation assigns to the variables of 
the ESI – allude to the importance of air quality in the first independent component, at least, in concert 
with water quality, childhood mortality and level of economic subsidy. This is illustrated in the list of 
variables with the greatest loadings or coefficient weights, in table 2.  
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Variable Name Component 1 Component 2 Component 3 
SO2 1 33 54 
NO2 2 24 42 
TSP 3 16 33 
ISO14 4 43 35 
WATCAP 5 43 35 
IUCN 6 23 25 
CO2GDP 7 52 61 
Table 2: Variables listed in order of first CICA component loading – magnitude of absolute value – and 
subsequent order of loading in components 2 and 3. The first component is dominated by stressor linked 
to air and water quality. 
 
The collection of traditional `stock’ and non-traditional `social capacity’ variables in the first three CICA 
components is interesting, especially so when contrasted with the loadings generated by PCA alone. The 
variables identified by the CICA method offer a more coherent illustration of the drivers of variation in 
the ESI; the divergence in the CICA factors from the PCA one is a proxy for the additional, non-
Gaussian, information or variability in the ESI. This difference is due to the ability of the CICA algorithm 
to capture dependence information in the data beyond multivariate normality. Table 3 lists the CICA 
loadings vs. the PCA loadings for the first component. 
 

CICA PCA 
SO2 NUKE 
NO2 BODWAT 
TSP TFR 

ISO14 FSHCAT 
WATCAP PESTHA 

IUCN WATSUP 
CO2GDP GRAFT 

Table 3: First component CICA loadings vs. PCA loadings for ESI. Air and water effluent, and treaty 
membership dominate the first component. Conversely, the first PCA component is less cohesive.  The 
CICA loadings – the first order determinants of the ESI – suggest that the major drivers of sustainability 
are pollution (air and water) and capacity. 
 
THE FUTURE FOR (ENVIRONMENTAL) INDEXING 
Any index is essentially a – linear or non-linear – collection of (almost always) non-independent variables 
for the purpose of projecting a multidimensional concept onto a univariate scale of comparison. The scale 
of comparison – the range of the index – though arbitrary, is completely determined by the scheme for 
index construction and the characteristics of the underlying data. A useful index must be thoughtfully 
constructed; consumers of the index, perhaps intuitively, typically focus on relative rankings rather than 
absolute score. This is certainly true for development indices – where relative performance can drive 
international aid. 

In a direct sense, the projection of the multivariate data onto the univariate scale is the definition of the 
index. When this projection is well known or easily predictable, the scheme for construction is 
straightforward: construct the index, i.e. weight the variables, to minimize a loss between the index and its 
predictable value. 

In general, let the value of the index, for one of a collection of administrative units, i, be θi . Data arrive 
as X = (X1,...,Xk ) ~ fX , a collection of ratings/scores with some multivariate, non-independent, 
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distribution fX . A full (linear) indexing scheme would yield: the scores for each unit; the explicit, 
perhaps endogenously determined weights; and confidence intervals for the index scores as well as the 

variable weights. That is: θi = cj
j=1

K

∑ Xj - the scores for each unit; the vector , cT  the weighting scheme 

chosen for the index; confidence intervals for the scores,  P(θi ∈(Li ,Ui )) = 1−α , and  
weights, P(cj ∈(li ,ui )) = 1−α . 

Choosing the appropriate weighting scheme and generating confidence intervals for each scalar θi  are 
separable tasks. On the other hand, the confidence intervals are of course affected by the choice of 
weighting scheme, even when the weights themselves are arbitrary in the sense that they are subject to an 
exogenous constraint chosen by the indexers.  
 
Essentially this couples the task of definition and prediction for the indexer: assignment of the weights is 
the specification of the index, but the specification of the index as a proxy for measurable idea must 
influence the estimation of the weights. Disentangling these tasks is heuristically, computationally and 
theoretically non-trivial.  

The author, in upcoming work on an index designed to measure progress towards the United Nations 
Development Program Millenium Development Goals (UNDP-MDG), addresses the joint prediction and 
specification problem (UNDP 2009-2010, in progress). 

 
CONCLUSION 
This chapter illustrates a generalization of Principal Component Analysis using copula families of 
distributions. This method, Copula Based Component Analysis (CICA), an alternative to non-parametric 
Independent Component Analysis (ICA) procedures, offers demonstrably more descriptive results on an 
index of environmental sustainability – the 2002 Environmental Sustainability Index (ESI).  

The CICA method accesses non-Gaussian dependence via an information theoretic technique on the 
special case of linear mixing models, the component analysis family.  This approach is a useful post hoc 
procedure for index construction: the goal in indexing is the, hopefully parsimonious, description of a 
multidimensional concept with a univariate value. 

Most useful indexes, perhaps ironically, are designed to measure concepts and quantities that are not 
predictable, have not yet been measured, and are undefined. Environmental sustainability is certainly of 
that type; humanitarian and social development goals are as well generally ill defined. The statistician’s 
role in these settings is substantial: it is, perhaps perversely ironic to avoid exact elucidation of statistical 
assumptions and methodology when they are dictated by the broad context of the desired measurements.  

Environmental statisticians have a stake in making the broad concept of sustainability operational: by 
providing specific measures by which decision makers and the public can judge progress, researchers can 
justify increased focus. 
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