
Statistics for Re-identification in Network Models

Justin Vastola

Georgia Institute of Technology

765 Ferst Drive

Atlanta, Georgia, 30332

email: jvastola@gatech.edu

Kobi Abayomi

Georgia Institute of Technology

765 Ferst Drive

Atlanta, Georgia, 30332

email: kobi@gatech.edu

Shawndra Hill

University of Pennsylvania

3730 Walnut Street, Suite 500

Philadelphia, PA 19104

shawndra@wharton.upenn.edu

January 5, 2011

Abstract

We consider statistics for re-identification for three popular network data models: Erdös-Renyi, Small

World and Scale Free. We view re-identification, in this setting, as hypotheses tests of network similarity

modulo a network data model. This problem has many implications in areas such as fraud detection

and author attribution. Much of the prior work on these statistical physics models — while cognizant

of the inherent stochasticity of the problem — has inadequately addressed statistical estimation and

inference. In this paper we offer a formal statistical framework for re-identification, using first principles

and the algorithmic specification of these models. Using our framework, we illustrate the method and its

performance on three network data examples: simulations, the Enron emails, and a telecommunications

dataset.

1 Introduction

Network data models [11] are applied in fields as diverse as genomic regulation in biology [1] and the social

geography of weblogs [12]. Traditionally, these graphs have been modeled by the random graphs of Erdös

and Rényi (ER) [10]. More recently, more complex structures have been suggested by Watts and Strogatz’s

(WS) [20] and Barabási and Albert’s [2] small-world and scale-free network structures (SF), respectively.

Each of these models are random — the models are generators for network structures under stochasticity

— and each of the models may be ’fit’, in the sense that each specify parameters which are dependent

upon the observed networked data. In fact: “the structural analysis of network graphs has traditionally

been treated primarily as a descriptive task, as opposed to an inferential task, and the tools commonly used

for such purposes derive largely from areas outside of ‘mainstream’ statistics” [17]. Commonly, attention
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is focused on characterizing degree distributions or diameters [19] as opposed to parameter estimation or

goodness-of-fit.

Much of the work on the Watts-Strogatz and Scale-Free models, in particular, has focused on their

construction: design algorithms, settings where they might arise, and descriptive properties such as the

clustering coefficient or average geodesic length [19]. Statistical inference methods and properties have

been infrequently addressed for these models, principally because the model specifications resist inferential

approaches. Alternately, p1 and p∗ models –those that impose a distribution from an exponential family for

the adjacency matrix–allow, in theory, straightforward application of typical statistical inference procedures.

Additionally, Hoff et al [15] developed a latent space model–a model based on an established latent geometry

on nodes–to achieve statistical flexibility in accurately describing a network. These types of models have

been used for inference on complex networked data, in contrast to the relative lack of inferential results for

WS and SF type networks.

In this paper we investigate statistical inference for the ER, WS and SF type models for network data

through consideration of the re-identification problem. We illustrate, in particular, a way of considering each

of the graphs as probability models and data ‘fit’ to a model as a random instantiation. We approach the

problem by exploiting algorithmic specifications of each of the graphs, as set out in the literature [2, 10, 20].

Our contribution is the placement of these models within a statistical framework and the description of

inferential — estimation and hypothesis testing — procedures that are meaningful for observed data.

1.1 Re-identification in Network Data

This paper develops a precise statistical method for the re-identification problem — the classification or

location of nodes in a network that represent the same identity, i.e., have the same signatures. In social

network data, this problem is often to identify people by their network connections or relational patterns. Re-

identification in social networks has been implemented by Cortes et al [8] and Hill et al [14]. Their approaches

focus on re-identification on a dynamic network through multiple tuning parameters and similarity scores

while ignoring any specified network model. In addition, Hill and Nagle [13] provide an approach to re-

identification by using a normal approximation for distributions of similarity.

This paper is a reconsideration of the re-identification problem — under an exact statistical character-

ization — for the ER, WS and SF models. In this paper we address re-identification from a definition of

the similarity ’score’. This approach offers distributional results and consequently yields score distributions,

parameter estimation, and hypothesis testing methods in a proper statistical setting. We present our findings

on simulated network data, the Reality Mining dataset of Eagle et al [9] and the infamous Enron emails.

The rest of the article is organized as follows: in section 2, we present our general methodology; section

3 contains the details for score distributions followed by the discussion of parameter estimation in section
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4; hypothesis testing is addressed in section 5; and results for simulated and real world data are found in

sections 6 and 7, respectively. A discussion with conclusions is in section 8.

2 Methodological Overview

We view individual networks G as draws from a family of networks G based on a specified probability

distribution Fθ in the same way that a random variable X is an instantiation of X(ω) (drawn from a sample

space Ω) based on a (not the same) probability distribution Fθ, say. The distribution of G, Fθ, say, may be

ethereal: implicitly, we consider the distribution of a graph as arising from an algorithmic construction in

lieu than of a complete, explicit specification. In fact, the difficulty in characterizing Fθ lies in mapping the

graphical object to an observable datum.

We choose to elide this vagueness by focusing on a particular representation of a random graphical object

and then considering its statistical properties. Under this formulation, Gθ is a random object — with G the

instantiation. We choose a particular representation of this instantiated network and then adopt traditional

statistical techniques for analyzing its structure by considering its distribution, or functions of it, via the

algorithmic specification of Fθ

Formally, let Gθ be a family of random network structures indexed by a vector valued parameter θ ∈ Θ.

This is: Gθ = {G ∼ Fθ|θ ∈ Θ}. A realization of Gθ is a network, G, consisting of vertices v ∈ V and edges

e ∈ E, where V and E are the vertex and edge sets, respectively.

When speaking of vertices and edges, it is convenient to index the vertices–denoted vi for all i ∈

1 . . .# {V }–and to denote an edge between vertices vi and vj by eij . For simplicity, we will often refer

to a vertex vi just by i, its index number only. A convenient representation of a network of order n is in

terms of its n× n adjacency matrix,

A =


a1

...

an

 =


a11 . . . a1n

. . .

an1 . . . ann

 ,
where

aij =

 1, if edge exists between i and j

0, otherwise.

This is: A(G) - the adjacency matrix of G. The sum of the ith row (or column) of A gives the degree

of node i–the number of edges connected to i–denoted di. Notice that A = A(G) is a particular choice of

representation of the random graphical object G. This allows us to be very general when considering random

graphical object, and very specific when referring to the matrix-valued random variable A.
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Using A, we look to define statistics η(A) = η(A(G)) (in the same way that we define statistics, η(X),

on random samples X ∼ F ) that we can use to address the re-identification problem.

2.1 Re-identification in a Network Model

For the re-identification problem, we are interested in whether or not two nodes have the same signature,

i.e., represent the same entity [13]. Consider, for example, a telecommunications network. A person may

appear more than once via a cell phone number and a land line. The signature of the cell phone and land

line numbers is an identifier for the phone user. In our setup, phone user i is node i in a network model. We

denote the signature of node i by σ(i).

In the network model, given two nodes i and j, we are interested in the ‘similarity’ between i and j, a

fortiori, the distribution of this similarity. We consider the overlap score statistic:

η(A) ≡ S(i, j) = 〈ai,aj〉 = # {i∗ : ai,i∗ = aj,i∗ = 1, i∗ = 1, . . . , n} (1)

with 〈·, ·〉 the usual dot product as our measure of similarity. When i = j, we call S(i, i) the match score,

and when i 6= j, we call S(i, j) the non-match score. The match score is nothing more than the degree

distribution of a particular node. The non-match score, on the other hand, measures how many edges two

particular nodes share. If (limiting) distributions can be calculated for both scores, then the likelihood of

an observed score can be known, and we can frame similarity via hypothesis testing.

Another way to say this is to suppose distribution S(i, j) ∼ Fθ. We could then suggest

H0 : σ(i) = σ(j) vs. Ha : σ(i) 6= σ(j), i = 1, . . . , n (2)

as a re-identification test (or tests) for person/node j. A straightforward way to conduct the test is with

the observed value of S(i, j) as the estimator for σ(i). Our approach is to notice that network construction

algorithms — for the Erdös-Rènyi, Watts-Strogatz, and Barabási-Albert scale-free models — are sufficient

for finding limiting score distributions for this particular choice of statistic η(A) = 〈ai,aj〉.

For example, the probability that two nodes share an edge can be deduced from the the rewiring scheme

discussed by Watts and Strogatz [20]. We use these probabilities to completely specify the non-match

distributions (section 3 provides details). Therefore, given a network construction, statements about the

likelihood of an observation can be made. Hypothesis tests formalize such statements.

2.2 Distributions for Similarity

Theoretically, Fθ can be written down exactly: in practice, of course, θ has to estimated from data. In a

hypothesis testing framework, (2) is a particular choice of tests for identifying person/node j in an observed
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network of n nodes. For a test statistic, we may consider the observed value of S(i, j) and thus

1− Fθ(s) = Prθ(S(i, j) > s) (3)

as a choice for the p-value of the test under a particular setting for the parameters of the score (similarity)

distribution. Here lies the richness of the problem: θ, for network models that are not completely random (i.e.

models other than the ER graphs), includes the labellings — orderings — of the nodes in the graph. This

means that the observed data must be used to estimate node labels — observation 1 is node i, observation 2

is node i+ 1, say — concurrently with similarity scoring. For non-random models, in fact, the distributions

of this scoring statistic (1) are completely dependent upon the choice of labels, which we properly consider

as additional model parameters.

For the match score distribution this distinction is trivial: the observed scoring statistic is merely the

observed degree of the node and re-identification is null. We attack the problem for the non-match score

distributions from first principles: we generate the distributions via the algorithmic constructions of the

network models and then consider hypothesis tests for re-identification that allow us to elide the dependency

between labellings and non-match scoring.

3 Score Distributions

We consider three well known network structures — ER, small-world, and scale-free. For each structure, we

derive its non-match score distribution by simply following the algorithmic constructions of the family Gθ

that generate each type of model.

3.1 Erdös-Rényi Networks

An ER network is constructed by independently placing edges with probability p among n nodes. Each pair

of nodes is considered once and an edge is placed between them with probability p, yielding
(
n
2

)
independent

Bernoulli trials. To derive the non-match score distribution for nodes i and j,i 6= j , we consider this construc-

tion. Notice, first, that each scalar product in the dot product via the score can be viewed as a Bernoulli trial.

Each scalar product is between two elements of the adjacency matrix, resulting in scalar products equal to ei-

ther a 0 or 1. The probability of success for each of these “trials” is P {ai,i∗ · aj,i∗ = 1} = P {ai,i∗ = aj,i∗ = 1}

when testing if nodes i and j share an edge with node i∗. Therefore, the score distribution, both match and

non-match, is the sum of Bernoulli random variables. For Erdös-Renýı networks, these random variables are

independent and identically distributed. The other two networks don’t have this accommodating property.
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The probability that nodes i and j share a common edge i∗, i∗ ∈ {1, . . . , n} \ {i, j}, is

P {ai,i∗ = aj,i∗ = 1} = P {ai,i∗ = 1}P {aj,i∗ = 1} = p2

since the two connections are made independently with probability p. We restrict node i∗ from equaling i

and j because the network construction doesn’t allow loops. Thus, ai,i = aj,j = 0 with probability 1, and

the probability of interest stated above is always 0 for these two cases. The non-match score distribution

is, therefore, S(i, j) ∼ Bin(n− 2, p2). Plots of the empirical match and non-match score distributions along

with the theoretical distributions derived above are shown in figure 1.
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Figure 1: These plots show the fits of theoretical non-match score distributions to empirical data for Erdös-

Rényi Networks of size n = 1000 with varying p.

3.2 Small-World Networks

Small-world networks, namely, those constructed by Watts and Strogatz, were developed to incorporate high

levels of clustering and small distances between most nodes–both properties found in real world data. A

family of small-world networks Gθ can be generated as a rewiring of a 2k connected lattice. As described in

Watts and Strogatz [20], the lattice is iteratively rewired with probability parameter p.

This characterization yields a limiting distribution for the non-match score distribution. Consider the

network generated from an initial, non-rewired 2k connected lattice. Post rewiring, the probability that an

edge is shared by nodes i and j is dependent upon the following pre-rewiring cases:

1. nodes i and j are both unconnected to node i∗, i.e., ai,i∗ = aj,i∗ = 0;

2. node i and j are both connected to node i∗, i.e., ai,i∗ = aj,i∗ = 1;
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3. node i is connected to node i∗ and node j is unconnected from i∗, i.e., ai,i∗ = 1, and aj,i∗ = 0.

We denote the limiting distribution of P {ai,i∗ = aj,i∗ = 1} for each case by fi, i = 1, 2, 3–the partial non-

match score distributions. When computing the overlap/similarity score S(i, j), each of case i = 1, 2, 3 may

arise. The total number of matching edges is the sum of the number of edges arising from each case. Thus,

we are interested in the distribution of Z = X1 + X2 + X3, where X1, X2, X3 are random variables from

distributions f1, f2, and f3, respectively.

Consider case 1 first. Prior to rewiring, nodes i and j are unconnected to node i∗. Denoting the lattice

distance between nodes i and j by ||i, j||, ||i, i∗|| and ||j, i∗|| are both less than k. The number of times this

case arises is

n1 =



n− 2k − ||i, j|| − 1, if 1 ≤ ||i, j|| ≤ k

n− 2k − ||i, j||+ 1, if k < ||i, j|| ≤ 2k

n− 4k, if ||i, j|| > 2k

0, otherwise.

When calculating P {ai,i∗ = aj,i∗ = 1}, we first note by the independence of the rewiring process,

P {ai,i∗ = aj,i∗ = 1} = P {ai,i∗ = 1}2 = P {aj,i∗ = 1}2 .

Now assume ai,i∗ = 0 pre-rewiring. Post rewiring ai,i∗ = 1 if: (i.) one of the k edges considered for rewiring

from node i is rewired to node i∗, or (ii.) one of the k edges considered for rewiring from node i∗ is rewired

to node i. View the rewiring of the 2k edges as 2k independent Bernoulli trials with success probability p/n,

where a success is defined as a rewiring that results in ai,i∗=1. Let X denote the number of success, i.e.,

X ∼ Bin(2k, p/n). Then,

P {ai,i∗ = 1} = P {X ≥ 1} = 1− P {X = 0} = 1− (1− p/n)2k,

implying P {ai,i∗ = aj,i∗ = 1} = (1 − (1 − p/n)2k)2. Note, we do not need to address whether or not node

i or i∗ is rewired first by assuming the possibility of multigraphs. The limiting distribution of the partial

non-match score is completely specified as

f1 ∼ Bin(n1, [1− (1− p/n)2k]2).

In case 2, nodes i and j are connected to node i∗, i.e., ||i, i∗|| and ||j, i∗|| are both less than k. This case

occurs

n2 =


2k − ||i, j|| − 1, if 1 ≤ ||i, j|| ≤ k

2k − ||i, j||+ 1, if k < ||i, j|| ≤ 2k

0, otherwise

times. Post rewiring, ai,i∗ = 0 if edge (i, i∗) is removed and not replaced while none of the 2k − 1 edges

remaining for rewiring connect nodes i and i∗. Edge (i, i∗) is removed and not replaced with probability
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p(n−1n ), while none of the 2k − 1 edges is rewired forming edge (i, i∗) with probability P {Y = 0}, where

Y ∼ Bin(2k − 1, p/n). Post rewiring, P {ai,i∗ = 0} = p(n−1n )(1 − p/n)2k−1 implying P {ai,i∗ = 1} = 1 −

p(n−1n )(1− p/n)2k−1. The partial non-match score distribution is

f2 ∼ Bin(n2, [1− p(
n− 1

n
)(1− p/n)2k−1]2).

The number of occurrences of the last case, when ||i, i∗|| > k and ||i, i∗|| ≤ k, or vice versa, is

n3 =



2||i, j||+ 2, if 1 ≤ ||i, j|| ≤ k

2||i, j|| − 2, if k < ||i, j|| ≤ 2k

4k, if ||i, j|| > 2k

0, otherwise.

Without loss of generality, assume ||i, i∗|| > k and ||j, i∗|| ≤ k. After the rewiring process, we have

P {ai,i∗ = 1} = 1 − p(n−1n )(1 − p/n)2k−1, and P {aj,i∗ = 1} = 1 − (1 − p/n)2k. The product of these two

probabilities is the probability of nodes i and j both being connected to node i∗. The partial non-match

score distribution is

f3 ∼ Bin(n3, [1− p(
n− 1

n
)(1− p/n)2k−1][1− (1− p/n)2k]).

The complete non-match score distribution is found by taking the convolution of f1, f2, and f3. In

particular,

S(i, j)
d
=

z∑
y=0

f3(z − y)

y∑
x=0

f1(x)f2(y − x)

=

z∑
y=0

(
n3
z − y

)
py−z3 (1− p3)n3−(z−y)1 {z − y ≤ n3}

×
y∑
x=0

(
n1
x

)
px1(1− p1)n1−x1 {x ≤ n1}

(
n2
y − x

)
py−x2 (1− p2)n2−(y−x)1 {y − x ≤ n2} ,

where p1, p1, and p3 are the probabilities of success for f1, f2, and f3, respectively. Figure 2 shows plots of

empirical histograms against the theoretical distributions derived above.

3.3 Scale-Free Networks

Scale-free networks are networks whose degree distribution follows a power law. Barabási and Albert [3]

provided a method of constructing scale-free networks based on growth and preferential attachment, however,

their description is imprecise. Bollobás and Riordan [7] remedy this issue by precisely specifying the model

of Barabási and Albert.

Denote a network with of size n–or equivalently, the network at time n = t–by Gm,n, where m is the

number of edges introduced at each time step. The construction follows. Start with an initial network, G1,1,
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Figure 2: These plots show empirical histograms of the match and non-match score distributions for the

small-world networks of Watts and Strogatz along with the theoretical fits. The sample size, rewiring

probability, and initial connectivity are n = 1000, p = 0.1, and k = 5, respectively.

with one vertex and one loop. Let dn,i denote the degree of node i when the size of the network is n. At

each time step add node n together with a single edge between nodes n and i, where i is randomly chosen

with

P(i = s) =

 dn−1,s/(2n− 1), 1 ≤ s ≤ n− 1

1/(2n− 1), s = n.

Each entering vertex is connected to an existing vertex proportional to its degree. We will denote the case

when the entering node j is attached to existing node i by hj = i. Note, when node n enters, it has degree

one before being connected to an additional node. The authors generalize this construction to adding m ≥ 1

edges at each time step. Each edge is connected to an existing node one at a time taking into account the

degrees added after each connection. In this case, node n has degree m when it enters.

For the non-match score distribution, we first consider the base case when m = 1, for each case where

m > 1 is derived from this base case. An important distinction between the scale-free network model and

the two previously considered models is that the preferential attachment scheme introduces a dependency

between whether or not two nodes share an edge. Where P {ai,i∗ = aj,i∗ = 1} = P {ai,i∗ = 1}P {aj,i∗ = 1}

for the ER and small-world network models, here the independence assumption does not hold. In particular,

these probabilities are dependent upon the order of the addition of the node in the wiring algorithm.

When calculating the probability that nodes j and k are both connected to node i, i.e., P {aj,i = 1, ak,i = 1},

we have to consider the following four orderings of nodes i, j, and k:
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• 1 ≤ i < j < k

• 1 ≤ i = j < k

• 1 ≤ j < i < k

• 1 ≤ j < k < i

We first note that the last case is irrelevant when m = 1 because only one edge is connected from node i;

i cannot be connected to both nodes j and k. This case is relevant, however, when m > 1. Following in the

footsteps of Bollobás and Riordan — i.e., by conditioning on the network at previous time steps–for each

case, we derive the following success probabilities. When 1 ≤ i < j < k,

P {ai,j = 1, ai,k = 1} =
4i+ 2

(2k − 1)(4i2 − 1)

k−1∏
s=j+1

(
2s

2s− 1
)

=

(
4i+ 2

(2k − 1)(4i2 − 1)

)(
4k−j−1(k − 1)!2(2j)!

(2k − 2)!(j)!2

)
.

When 1 ≤ i = j < k, we get the following probability:

P {ai,j = 1, ai,k = 1} =
2

(2i− 1)(2k − 1)

k−1∏
s=i+1

(
2s

2s− 1
)

=

(
2

(2i− 1)(2k − 1)

)(
4k−i−1(k − 1)!2(2i)!

(2k − 2)!(i)!2

)
.

Lastly, when 1 ≤ j < i < k, by modifying the work of Bollobás and Riordan, we calculate

P {ai,j = 1, ai,k = 1} =
1

(2i)(2k − 1)

k−1∏
s=j

(
2s

2s− 1

)

=
1

(2i)(2k − 1)

(
4k−j(k − 1)!2(2j − 2)!

(2k − 2)!(j − 1)!2

)
.

Let Xi
j,k denote the Bernoulli random variable with success probability pij,k := P {ai,j = 1, ai,k = 1} ,

i.e., the random variable representing whether or not nodes j and k are both connected to node i. The

non-match score distribution is the sum of these random variables from i = 1, . . . , k − 1 for i 6= j. Unlike

in the small-world scenario, these Bernoulli random variables are dependent, where the dependence arises

not from the preferential attachment, but from the parameter m which restricts the maximum value of the

overlap score. In the case we are considering, m = 1, the overlap score is restricted to be a Bernoulli random

variable. Denote this random variable, the non-match score, by Z =
∑k−1
i=1 X

i
j,k, assuming the k > j. The

probability of success is

P {Z = 1} = E

[
k−1∑
i=1

Xi
j,k

]
=

k−1∑
i=1

pij,k,

yielding a final non-match score distribution of
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P {S(i, j) = s} =

 1−
∑k−1
i=1 p

i
j,k, if s = 0∑k−1

i=1 p
i
j,k, if s = 1.

We have only considered the case when m = 1. In principle, similar logic will lead us to distributions

for arbitrary m, but the actually derivations for m > 1 rapidly increase in difficulty, leaving the appropriate

distributions to be calculated empirically via simulations.

4 Parameter Estimation

Complications arise in parameter estimation in network data due to the dependent nature of the data. In

particular, the dependence among the degrees of each node makes finding likelihood distributions difficult

since the likelihood is no longer the product of the marginal distributions. For the ER network model,

estimating its sole parameter p is not burdensome, yet developing estimators in WS and SF network models

poses some complications.

See Mckay and Wormald [18] for a conversation about of the dependency of the degrees in an Erdös-

Rényi network. Other styles of estimators, such as Horvitz-Thompson estimators, heavily depend on the

sampling schemes to estimate certain parameters along with the accuracy of each estimate. See chapter 5 of

Kolaczyk [17] for illustrations.

4.1 Estimation in Erdös-Rényi networks

A family of Erdös-Rényi networks with known order n, along with the match and non-match scores distribu-

tions are completely characterized by parameter p. Let E denote the total number of edges in the observed

network. Unlike the other two network models, this is observable quantity is random. Since the placement

of each edge is independent of the placement of all other edges and the probability of placing each edge is

identical, the total number of edges in an ER network is simply a binomial random variable with
(
n
2

)
trials

and success probability p, reducing the parameter estimation in ER networks to estimation for a binomial

random variable. In particular, the maximum likelihood estimate of p is p̂ = Eobs

(n
2)
, where Eobs is the observed

number of edges. For this simple model, we have the luxury of knowing statistical properties of this esti-

mator, i.e., limiting distribution, while as for the other network models, properties of their estimators are

analytically elusive due to complex dependencies in the data.

4.2 Estimation in small-world networks

For the small-world network construction we consider, the parameter to estimate in order to completely

specify Gθ is θ = (k, p). To get around the dependency in the data, we consider estimates of k and p based
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on the method of moments. Barrat and Weigt [4] showed that the mean behavior of the degree of any

particular node is 2k, i.e., E[di] = 2k. It is easy to see this relationship without the technical derivations.

Noting that E[d̄] = E[di], the method of moments estimator of k is k̂ = d̄/2, where d̄ is the observed average

degree. To estimate p, we consider the total number of triads centered at node i, denoted ti. Our definition

of a triad centered at node i is a subnetwork consisting of 3 nodes connected by two edges with the degree

of node i equal to 2. Let tfixedi and tvari be the number of triads centered at i that always exist and the

number of triads centered at i that vary based on the rewiring process, respectively. Additionally, let Xi be

a random variable denoting the number of edges that are connected to node i initially that are not rewired

to a different edge and Yi denote the number of edges that are not initially connected to node i that are

rewired to node i. Then, Xi ∼ Bin(k, 1− p) and Yi ∼ Bin((n− 2)k, p/n). Then we have

E[ti] = E[tfixedi ] + E[tvari ]

= E[tfixedi ] +

k∑
a=1

(n−2)k∑
b=1

E[tvari |Xi = a, Yi = b]P[Xi = a, Yi = b]

= E[tfixedi ] +

k∑
a=1

(n−2)k∑
b=1

E[tvari |Xi = a, Yi = b]P[Xi = a]P[Yi = b]

=

2k−1∑
l=1

l +

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +

a+b−1∑
c=1

c

P[Xi = a]P[Yi = b]

=
k(k − 1)

2
+

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +
(a+ b)(a+ b− 1)

2

P[Xi = a]P[Yi = b],

where

P[Xi = a] =

(
k

a

)
pa(1− p)k−a1 {a ≤ k}

and

P[Yi = b] =

(
(n− 2)k

b

)( p
n

)b (
1− p

n

)(n−2)k−b
1 {b ≤ (n− 2)k}

The total expected number of triad, ttot =
∑n
i=1 ti = n ∗ ti, is

E[ttot] = n
k(k − 1)

2
+ n

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +
(a+ b)(a+ b− 1)

2

P[Xi = a]P[Yi = b]. (4)

To estimate p, plug k̂ into equation (1) as well as replace E[ttot] with the observed total number of triads

which we denote by tobs. Analytically solving the resulting equation is quite cumbersome, however, numerical

solutions are very easy to come by. The estimate of p is:

p̂ = arg min
0≤p≤1


∣∣∣∣∣∣tobstot −

nk(k − 1)

2
+ n

 k∑
a=1

(n−2)k∑
b=1

(a+ b)k +
(a+ b)(a+ b− 1)

2

P[Xi = a]P[Yi = b]

∣∣∣∣∣∣
 .
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Barrat and Weigt [4] also argue that the mean behavior of the clustering coefficient–the ratio of the

mean number of links between the neighbors of a vertex and the mean number of possible links between the

neighbors of a vertex–asymptotically behaves like

cc =
3(k − 1)

2(2k − 1)
(1− p)3.

We can use this asymptotic identity to estimate p, but it must be noted that the resulting estimator serves as

an approximate method of moments estimator since terms of order 1/n are ignored. We propose the above

estimator for its specificity.

We must emphasize that the non-match score distribution for each pair of nodes (i, j) is dependent on

the lattice distance between the nodes through the parameters n1, n2, and n3, meaning to properly specify

the non-match score distribution, we essentially need the labels of the nodes. To the best of our knowledge,

we don’t know of any algorithm that will accurately estimate the node labels, and in fact, discovering the

labels from an unlabeled graph may be an infeasible task with out any additional information. If we know

the labels, then we can just apply the methodology to the above non-match score distribution, while on

the other hand, when we have no knowledge of the node labels, we view the data–the non-match scores–as

coming from a mixture distribution which can replace the non-match score distribution in our methodology.

Formally, consider s1, . . . , sbn/2c, where si denotes the non-match score distribution for two nodes distance

i apart. Let α1, . . . , αbn/2c ∈ R be the mixing parameters such that 0 ≤ αi ≤ 1 for all i and
∑bn/2c
i=1 αi = 1.

The mixture distribution is

fmix =

bn/2c∑
i=1

αisi.

The αi’s are actually known, so we are not introducing any additional parameters, leaving only p and k to

be estimated as before. For instance, if n is even, αi = 2
n−1 for i = 1, . . . , bn/2c − 1 and αbn/2c = 1

n−1 .

Adopting the mixture distribution yields less power in the statistical tests for detecting an anomalous

event–the event that two nodes have too many common neighbors–yet reduces the risk of type I error for the

re-identification problem. This result is not a problem, however, since the re-identification problem is not

to detect all anomalous event but the event that two nodes have the same behavior. For example, consider

a WS network with n = 200 and k = 7. Two nodes, i and j, that are at opposite ends of the lattice, i.e.,

||i, j|| = bn/2c, will be concluded to represent the same identity using the non-match score distribution sbn/2c

for an non-match score of 2. On average, however, nodes will have 14 neighbors (see section 4.2), so we don’t

want to conclude that two nodes have the same signature when they have only two common neighbors.
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4.3 Estimation in scale-free networks

The scale-free model considered here has only one parameter to be estimated, m. We only consider the case

when m = 1, so no estimation is needed to characterize the family of scale free networks that we consider

here. If we observe data and need to estimate m, contrary results arise. There are two methods for finding m:

taking m as the minimum degree and using the total number of edges to find m. This network construction

always gives a network with mn edges. Many real world networks will have a node with degree 1 at some

point in its construction, yet the network will almost always have more than n edges. This complication in

parameter estimating m stems from the highly simplistic nature of the model.

Similar to the WS model, the non-match score distributions depend on the labellings of the nodes–the

time stamp when node enters the network in opposition to the positioning around a lattice. At a first glance,

one may think that the preferential attachment characteristic would give the order in which the nodes enter–

hence the labeling–since earlier nodes will typically have a higher degree than nodes that enter the network

at a later time, yet this result is the case. Consider this likely scenario. When the fourth node enters into

the network, suppose the degrees of nodes 1, 2, and 3 are 4, 1, and 1, respectively, the event that nodes 2

and 3 both connect to node 1. Node 4 is just as likely to attach to node 2 as it is to node 3, and if its edge

links to node 3, than node 3 will have a higher ‘preference’ than node 2, likely to result in node three having

a larger degree than node 2. Similar scenarios will play out as the network grows, and the likelihood that

the node time stamps will be the same as the labeling induced from the ordered degrees is very small. As

a result, developing even a consistent estimate for the labellings is likely impossible, where consistency here

refers to asymptotic properties resulting from an infinite network.

Once again, we will consider a mixture distribution to eradicate the necessity of node labels. Let si,j

denotes the non-match score distribution for two nodes, i and j. Let αi,j ∈ R be the mixing parameters such

that 0 ≤ αi,j ≤ 1 for all (i, j) and
∑

all i,j αi,j = 1. The mixture distribution is

fmix =
∑
all i,j

αi,jsi,j ,

where αi,j = 1

(n
2)

for all (i, j).

5 Hypothesis Testing

A single hypothesis test H0 : σ(i) 6= σ(j) vs. Ha : σ(i) = σ(j) is straightforward to perform, yet may not

be very relevant to the re-identification problem since the knowledge of which two nodes to test is elusive.

Instead, multitudes of hypothesis tests need to be performed, resulting in the need for a multiple testing

procedure. The multiple testing procedure we choose to use is based on controlling the false discovery rate

(FDR) using methods proposed by Benjamini and Hochberg [5] and extended by Benjamini and Yeuketieli [6].
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Recall,

FDR = E

(
Rfalse
R
|R > 0

)
,

where R is the number of rejections among m tests and Rfalse is the number of false rejections. Controlling

the FDR has advantages when considering applications of re-identification. In context of fraud detection, a

company wants to minimize the number of false discoveries–the claim that a user is committing fraud when

in fact is not–so as to not have to wrongfully accuse customers of fraud and to reduce the amount of time that

a company representative has to investigate false fraud claims. The Benjamini-Hochberg procedure for con-

trolling the significance level at γ is as follows: calculate the p-values for each of the m tests giving p1, . . . , pm;

order the p-values giving p(1), . . . , p(m); define k = max
{
i : p(i) ≤ ( im )γ

}
; and reject H0

(1), . . . ,H
0
(k). In their

work, they show that the FDR will be controlled at the level γ for independent hypothesis tests. The tests

we are considering are not independent but have an ambiguous dependence inherited from each construction

algorithm. Consider an ER network with the extreme case that two nodes i and j have an overlap score

of n − 2, i.e., each node is connected to every other node. The overlap score for node i∗ and i is at least

one less than the degree of i∗. It is clear that a dependence in the test statistics exist, yet the nature

of the dependency is not well understood, leaving creating network specific tests to control the FDR as a

highly arduous task. Benjamini and Yeuketieli, provide a method that allows for any general dependence

amongst hypothesis tests. In particular, they show that by changing the definition of k as defined in the

Benjamini-Hochberg procedure to k = max

{
i : p(i) ≤ i

m(
∑m

i=1 1/i)
q

}
, the FDR will be controlled at a level

less than or equal to m0

m q, where m0 is the number of true null hypothesis. The generality of the multiple

testing offered by Benjamini-Yeuketieli procedure makes it an attractive testing procedure for the unknown

dependence structure inherited by the network constructions.

6 Simulation Results

We first illustrate how our methodology for each network through simulations. For each construction, we

simulate a network of size n = 1000 with specified parameter θ and measure performance based on the false

positive rate (FPR) and the true positive rate (TPR). We replicate each network 100 times and average the

FPR and TPR for a more accurate evaluation.

For ER networks, we vary p over the set {.2, .5, .8}, and for the WS networks, we study the cases that

were highlighted in the seminal work of Watts and Strogatz [20]. In particular, we fix k = 5 and vary p over

the set {.001, .01, .1}. The results are shown below.
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Erdös-Rényi Networks

n = 1000, p = .2 FPR=0.00615; TPR=1

n = 1000, p = .5 FPR=0.00501; TPR=1

n = 1000, p = .8 FPR=0.00570; TPR=1

Watts-Strogatz Networks

n = 1000, k = 5, p = .001 FPR=0.00100; TPR=0.99996

n = 1000, k = 5, p = .01 FPR=0.00108; TPR=0.99894

n = 1000, k = 5, p = .1 FPR=0.00082; TPR=0.94882

Figure 3: False Positive and True Positive rates for node re-identification, Erdös Rényi and Watts-Strogatz

Networks, using overlap score distribution.

Each method performs very well, with the TPR of the ER networks slightly higher than in the WS networks.

This result is due to the fact that the clustering coefficient–thus, the propensity for two nodes to have more

neighbors in common–in WS networks is higher than that of ER networks. However, even with the high

clustering, our method performs very well for WS networks.

For the SF network, we ran simulations for m = 1, the case that we derived exactly. Our framework

has trouble correctly identifying nodes representing the same signature–with the TPR ≈ .5–due to the SF

network property that many nodes will simply have degree m. For a small value of m, especially for m = 1,

we know very little information about many nodes, making it hard to ‘re-identify’ it.

7 Applications

We apply our methodology to two datasets: the Reality Mining Group at MIT which was introduced by

Eagle et al [9] and the infamous Enron email dataset. Since each dataset doesn’t have fraudulent activity

in the form of two nodes representing the same entity, we treat each match score, i.e., the comparison of

a node with itself, as a non-match score. After estimating the parameters, a decision needs to be made

on which model is actually provides the best fit. Goodness-of-fit (GOF) has been addressed by Hunter et

al [16] who offer a graphical procedure for GOF by plotting simulated distributions of the degree, edge-wise

shared neighbors, and mean geodesic distance against the observed distributions for a given network dataset.

Theoretical results for GOF and model selection procedures are uncharted due to the dependencies in the

data which make traditional chi-square GOF tests and AIC and BIC model selection procedures irrelevant.

We provide a brief discussion for each dataset on which model we feel is most appropriate.
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7.1 Reality Mining Dataset

The Reality Mining dataset consists of 100 subjects–faculty and undergraduate and graduate students from

MIT–whose telephone calls were being tracked. We consider a restricted dataset by only considering in-

network calls and removing all loops, multiple edges, and isolated nodes, resulting in a network with 72

phone users. A plot of the network is show in Figure 4.

Figure 4: Network representation of the call patterns in the restricted Reality Mining dataset.

The table below shows the parameter estimates for each of the network constructions along its associated

FPR and TPR.

Notice for the WS model, p is estimated to be close to 1, giving a highly random network that is essentially

an imitation of an ER network. As a result, the ER and WS models yield the same performance based on

the FPR and TPR. The performance for the SF network seems to be the best, but this performance is due

to a model misspecification which leads to the rejection of the null hypothesis whenever two nodes have an

overlap score greater than 1. One of the criterion for GOF proposed by Hunter et al is the edge-wise shared

neighbors, which is similar to our overlap score. Based on this criterion, it is clear that the SF model is not

an appropriate model since the many pairs of nodes have an overlap score greater than 1 which occurs with

probability zero under the assumed model. None of the models performs adequately, which is due to the

Erdös-Rényi p = .0411 TPR=.4167, FPR=.00469

Watts-Strogatz p = .9326, k = 1 TPR=.4167, FPR=.00469

Barabási-Albert m = 1 TPR=.7083, FPR=.02152

Figure 5: FPR and TPR for overlap score distribution re-identification on Reality Mining data
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simplistic nature of the ER model and the rigidity of the WS and SF models.

7.2 Enron Emails

The Enron emails have been well studied in network literature. The data we consider consists of emails sent

between 144 top executives, where multiple edges and loops have been removed. A plot of the dataset is

shown in Figure 6. The table below shows the parameter estimates for each of the network constructions

Figure 6: Network representation of the email patterns of 144 top Enron executives.

along its associated FPR and TPR.

The ER model performs the best, as it is the best approximation of the three network models. The WS

model inherits trouble through the estimate of k = 9, when many nodes have degree less than 9. A WS

model is restricted in such a way that all of its nodes must have degree greater than or equal to k. Similar

to the Reality Mining dataset, the SF model is not appropriate since many pairs of nodes have an overlap

greater than 1. As a result, the TPR is high at a cost of the FPR being high as well.

Erdös-Rényi p = .1312 TPR=.8690, FPR=.1312

Watts-Strogatz p = .7480, k = 9 TPR=.0069, FPR=0

Barabási-Albert m = 1 TPR=.9793, FPR=.5575

Figure 7: FPR and TPR for overlap score re-identification on Enron email data.
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8 Discussion and Conclusions

In this paper, we have explored three well known network models — ER, WS, and SF — in the context of

the re-identification problem by considering a precise statistical treatment which has previously been ignored

for WS and SF networks and only approximately considered for ER models [13].

This approach illustrates how statistical inference can conducted with only an algorithmic recipe for the

construction of a network model. In a direct sense, this take suggests a sufficiency property for at least

this (perhaps trivial) version of a similarity score. The broader specification of these physics-type network

models as statistical objects is important:

Which network properties are ‘wiring’ algorithms sufficient for? Here we have derived overlap/similarity

scores from standard ‘wiring’ procedures. Are these algorithms sufficient for other statistical functions

on networked data, for other interesting hypothesis settings?

What constitutes a unique ‘wiring’ algorithm? These network models overlap in that it is possible

that an observed network could have resulted through more than one algorithmic constructions, i.e.,

through restrictions on the parameter spaces, for example, an ER network and a WS network may

be indistiguishable. In the same way that a characteristic function completely defines the probability

distribution of a random variable, is there an analogue for these physics type models?

Estimation, Hypothesis Testing and Goodness of Fit: We have offered straightforward, almost post

hoc, methods for estimating the network model parameters and testing the re-identification hypotheses.

Is there a framework that can be deduced from a proper statistical specification of these models as

random objects?

In a sense, we can think of these questions as placing these (physics type) models within a modeling frame-

work. We comment that these models have arisen in the literature in ignorance of their statistical specifi-

cation; hypothesis testing uses of these models in absence of this framework has relied on ad hoc, empirical

methods. We have demonstrated a straightforward statistical characterization and illustrated its conse-

quences for a version of the re-identification problem.

In this paper we have had to work around the dependence structure in these network models; princi-

pally because the observed degree distribution for a network cannot be treated as an independent sample.

In particular, we have relied on parameter estimation and hypothesis testing procedures that do not de-

pend, directly, on the statistical likelihood. This loses the convenience of asymptotic theory that maximum

likelihood methods provide for hypothesis testing, model selection, and inference on parameter estimation.

The simplicity of the ER model and the rigidity of the WS and SF models complicates inference on

real datasets. Although it is possible to estimate parameters, the appropriateness of the networks may be
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limited, however, as our understanding of networks through generative algorithms increases, these procedures

could be applied to better (statistical) specifications of network models for more accurate inferences on real

networked data.
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