
1

Probabilistic ‘Best Set’ Sorting Algorithms
for Multivariate (Prognostic) Data.

Fang Cao, Kobi Abayomi, Nagi Gebraeel

Abstract—We derive a general method for the
probabilistic identification of the best (worst) k of
n multivariate (m dimensional) cases. As a statistics
problem, i.e. to generate a predicted best (worst) set,
we recast two deterministic sorting algorithms —
the Threshold and Minimal Probing algorithms —
as probabilistic queries, subject to tunable tolerance
levels, that converge to the deterministic best (worst)
sets. Our investigation is motivated by identification
of the ‘top (bottom) - k’ units in a multiple machine,
multiple component system that generates prognostic
failure information. By exploiting distributional and
dependency assumptions among the components our
probabilistic algorithm yields a less ‘costly’ probe of
the machines. More generally: we offer probabilistic
versions of well known sorting algorithms and demon-
strate bounds for probabilistic multivariate sorting
based on between case dependence, via the copula
and multivariate order statistics.

I. INTRODUCTION

The setting for this paper is the identification
of the best (or worst) k units in a fleet of n m-
component machines; this is referred to as a ‘top-
k’ search [(5)]. The goal is to find the top-k units
using the least amount of information: the fewest
machines and minimal number of components in
each machine. More generally, this is to sort mul-
tivariate data while inspecting as little of it as
possible; this is exactly the task in the well-known
threshold algorithm (TA) [(6)] and its revision, the
minimal probing (MPro) [(12)] algorithm. These
algorithms are prototypically deterministic: the sort-
ing proceeds without any distributional assumptions
on the data and only the most general concatenation
of the component information [(20), (21), (1)].

All Authors: Stewart School of Industrial and Systems En-
gineering, Georgia Institute of Technology, Atlanta, GA 30332
USA. Corresponding Author, email: kobi@gatech.edu

Our innovation is to recast these algorithms under
distributional assumptions, and under more general
functions for ‘scoring’ each machine (case, unit).

We specifically consider the situation where the
units (machines, cases) offer degradation or health
information from which we can generate ‘prog-
nostics’: residual lifetime predictions [(13), (24)].
Prognostics deals with predicting the remaining
useful life of partially degraded systems. In a few
applications, direct measurement of the degradation
state of a component or system is possible, in
most cases however such measurements are not
accessible. For these cases, indirect measurements
of the degradation states are often the primary, if
not the only, way to assess the state of health of a
system during its operation [(25)].

These indirect measurements are the multivariate
data on which we perform the ‘top-k’ sorting; the
data are ‘degradation signals’ — patterns related
with physical transitions in degradation. These sig-
nals are used to estimate the remaining, or residual
life, of the system components [(9), (18)]. Acquisi-
tion of these data is often costly: the desirable goal
in a ‘top-k’ procedure is to find the best (worst)
units (machines, cases) with the minimal cost from
data collection. Gebraeel considers the standard,
deterministic, TA and MPro algorithms in (8): this
paper is a generalization of that approach under
proper, probabilistic assumptions, and in particular
a specification of the degradation data as random
observations.

The methodology in this paper is not limited to
the degradation setting: the algorithms we offer can
readily and immediately be applied to any setting
for probabilistic sorting of multivariate, dependent,
data.



2

A. Commensurate work

Recent work [(4)] describes an approach to com-
pute a top-k set of answers (analogous to our cases,
units, machines) to an SQL query on a probabilistic
database: this set is then sorted by probability. This
algorithm runs several Monte-Carlo simulations in
parallel, one for each candidate answer, and approx-
imates each probability only to the extent needed
to compute correctly the top-k answers. Soliman
also [(14)] studies the top-k query in an ‘uncertain’
database. This paper integrates traditional top-k se-
mantics with ”possible worlds” semantics, and con-
structs a framework that encapsulates a probabilistic
model and efficient query processing techniques.
While the paper demonstrates a minimal number
of accessed m-tuples the algorithms has exponen-
tial complexity in both time and component-wise
space. In affix to (14), (11) introduces polynomial
algorithms for processing top-k queries in uncertain
databases under the generally adopted model of x-
relations, and the algorithms run in near linear or
low polynomial time in uncertain databases.

In (2) and (16) model-driven approaches peculiar
to sensor networks are used in conjunction with top-
k type query processing. Our technique differs from
these in that it is explicitly probabilistic; we rely on
multivariate distributional assumptions for the data,
given the (particular degradation) model we outline
below.

Lastly, and in direct appeal to the TA/MPro
algorithms, (15) and (23) have introduced approxi-
mate versions via ‘guaranteed’ thresholding of the
error of selecting a non-top-k unit. Our approach
differs because we explicitly score each unit (case,
machine), offer general results for the choice of
component-wise concatenation/scoring, and yield
almost sure convergence to the deterministic result
under distributional assumptions.

This paper consists of six additional sections.
The second section, below, discusses the particular
degradation model we suppose to generate the data.
The third and fourth sections introduce the random
variable based algorithm for top-k identification,
including probing strategy and stopping criterion,
for the TA and MPro algorithms. We illustrate some
results from (simulated) prognostic data in the fifth

section, comment more generally on multivariate
probabilistic sorting under between case depen-
dency in the sixth section and consider further work
in the conclusion. Figures follow the body of the
paper. The methods we describe in the third, fourth
and sixth sections are immediately generalizable to
any setting where sorting/ranking of multivariate-
dependent data is desirable; the second section can
be considered modular: peculiar to the specific data
we consider here and readily exchangeable.

II. DEGRADATION MODELING

The typical assumptions about the degradation
process, and thus the data, are ‘graceful’ degrada-
tion and monitoring of the deterioration via dedi-
cated sensors. If the units (machines, cases) exhibit
a predictable degradation pattern, future health can
be predicted from the collected information. Since
direct measurements of the degradation states are
often not accessible, indirect measurements are of-
ten the primary if not the only way to assess the
state of health of a system during its operation.
This is performed using sensor-based condition
monitoring techniques in which degradation or per-
formance measures, such as vibration, temperature,
and acoustic emissions, are observed over time.

These observed measures typically exhibit char-
acteristic patterns associated with the underly-
ing physical transitions occurring during degrada-
tion. The measurements are known as degrada-
tion signals. Given a predetermined failure thresh-
old, degradation signals can be used to estimate
the residual life of partially degraded components.
Therefore the degradation model combines two
sources of information: the reliability characteristics
of the population of critical components and real-
time sensor information.

A. Degradation model

A common type of degradation model is the
exponential model with Brownian motion error:

L(t) = θ′ + β′t+ ε(t) (II.1)

where L(t) is the logged degradation signal,
θ′ is the random intercept with prior distribution



3

N(µ0, σ
2
0), and β′ is the random slope with prior

distribution N(µ′1, σ
2
1) with µ′1 = µ1− σ2t

2 and ε(t)
following a discrete time Wiener process with mean
zero and variance σ2t.

At time ‘epochs’ t1, t2, ..., tk where

tj = j · t1, j = 1, ..., k

the corresponding signals are L1, ..., Lk.
Given the observed signals L1, ..., Lk, the pos-

terior distribution of β′ is N(µβ′ , σ
2
β′), and the

posterior distribution of θ′ is N(µθ′ , σ
2
θ′), where

µθ′ = A−1[(L1σ
2
0 + µ0σ

2)(σ2
1tk + σ2) (II.2)

−σ2
0t1(σ2

1

k∑
i=1

Li + µ′1σ
2)] (II.3)

µβ′ = A−1[(σ2
1

k∑
i=1

Li + µ′1σ
2)(σ2t1 + σ2

0) (II.4)

−σ2
1(σ2

0L1 + µ0σ
2t1)] (II.5)

σ2
θ′ = A−1[σ2σ2

0t1(σ2
1tk + σ2)] (II.6)

σ2
β′ = A−1[σ2σ2

1(σ2
0 + σ2t1)] (II.7)

with

A = (σ2
0 + σ2t1)(σ2 + σ2

1tk)− σ2
0σ

2
1t1).

For the above degradation model, the parameters
µ0, µ1, σ0, σ1, σ can be estimated using observed
signals [(9)]. This can be seen as a a particu-
lar version of a hierarchical linear or ‘random-
effects’ model [(10)]: the model is fixed but the
effects/coefficients are random and updated from
observable data.

B. ‘Health’ measurement:

According to the model (II.1), we have the fol-
lowing equations:

L(tk) = θ′ + β′tk + ε(tk) (II.8)

L(0) = θ′ + ε(0) (II.9)

where is tk the kth time epoch. Equations (II.8)
and (II.9) yield

β̃′ ,
L(tk)− L(0)

tk
= β′ +

ε(tk)− ε(0)

tk
, (II.10)

where β′ ∼ N(µβ′ , σ
2
β′);

ε(tk)−ε(0)
tk

∼ N(0, σ
2

tk
).

Thus β̃′ ∼ N(µβ′ , σ
2
β′ + σ2

tk
) due to independence.

Based on the above deduction, we define the
‘health’ as

X ,
β̃′

µL(tk) −D
(II.11)

by algebra and the normality of linear transforms
of normal random variables

X ∼ N

(
µβ′

µθ′ + µβ′tk −D
,

σ2
β′ + σ2

tk

(µθ′ + µβ′tk −D)2

)
,

(II.12)
where D is the predetermined threshold value,

and µL(tk) = E[L(tk)] = µθ′ + µβ′tk.
In a physical interpretation of the formula, the

score X is an approximation for the reciprocal of
the negative residual life time; the larger score, the
‘healthier’ the component.

Once the ‘health’ scores are calculated, the can
be used as inputs to a sorting algorithm to identify
the top-k units. We introduce a probabilistic version
of the TA algorithm, in the next section, and then
of the MPro algorithm. Both versions rest upon
an elucidation of the data — the health scores —
as proper observations: that is as instantiations of
random variables.

III. PROBABILISTIC TOP-K QUERY BASED ON
THE THRESHOLD ALGORITHM

The TA algorithm for top-k ranking was first
proposed by Fagin in 1996 [(6)]. The algorithm
begins under the assumption that each column of the
data is ordered. The algorithm proceeds by scanning
the sorted data row-by-row, i.e. case by case (unit,
machine), and stops when the threshold value of the



4

row is no greater than the minimal overall score of
current top-k list. Nevertheless, TA treats the scores
as deterministic values, and does not incorporate
the distributional information of the scores. Here
we develop a probabilistic algorithm by leveraging
the dependence among components. This yields a
probabilistic TA procedure which converges to the
deterministic TA result, but requires less iterations
at less than certain levels of tolerance. We recom-
mend either (6) or (8) for a full take on the TA
algorithm.

A. The data(base) as random variable(s): X

Suppose we have n units, each with m compo-
nents. Let real valued X be the entire data; Xij

the ‘health’ of the jth component of ith unit. For
each unit (case, machine), say, real vector valued
Xi can follow multivariate normal distribution; this
is to assume the units (cases, machines) are in-
dependent from one another (across n) but retain
inter-component dependence (across m). It should
be noted that we could consider any elliptical
multivariate distribution (multivariate exponential
distribution (MVE) or multivariate inverse Gaussian
distribution (MIG), for example), i.e. any distribu-
tion with second order dependence.

Let X(k)j be the kth order statistic for col-
umn j such that X(n)j = max1≤i≤nXij and
X(1)j = min1≤i≤nXij . The goal to derive
the distribution for the random vector X(r) =
[X(r)1X(r)2, ..., X(r)m], as well as certain functions
of it. This is the crux of the probabilistic extension
of the TA algorithm: the derivation of the distri-
bution of the multivariate order statistics, the rth
of n independent, sorted, rows. We use this result
to predict the stopping ‘place’ (iteration) for the
Threshold Algorithm, and use that as the objective.

B. Deriving FX(r)
, the c.d.f. for X(r)

For illustration we start with the two-component
case. The derivation mimics the problem of putting
n balls into 4 bins with constraints, as illustrated in
Table III-B.

Xi1 Xi2 Total
≤ x2 > x2

≤ x1 t1 t2 l1
> x1 t3 t4 n− l1
Total l2 n− l2 n

Table I
DERIVING THE DISTRIBUTION OF MULTIVARIATE ORDER

STATISTICS WHEN m = 2

The derivation:

FX(r)
(x1, x2) = P(X(r)1 ≤ x1, X(r)2 ≤ x2)

= P(At least r of Xi1 ≤ x1, at least r of Xi2 ≤ x2)

=
∑

l1,l2≥r

P(Exactly l1 of Xi1 ≤ x1, exactly l2 of Xi2 ≤ x2)

=
∑

0≤t1,t2,t3,t4≤n
t1+t2+t3+t4=n
r≤l1,l2≤n

n!

t1!t2!t3!t4!
pt11 p

t2
2 p

t3
3 p

t4
4 (III.1)

where

p1 = P(Xi1 ≤ x1, Xi2 ≤ x2), (III.2)
p2 = P(Xi1 ≤ x1, Xi2 > x2), (III.3)
p3 = P(Xi1 > x1, Xi2 ≤ x2), (III.4)
p4 = P(Xi1 > x1, Xi2 > x2). (III.5)

So, for the special cases of the above result, the
c.d.f. of the “top row” is

FX(n)
(x1, x2) = pn1 (III.6)

and the c.d.f. of the ”bottom row” is

FX(1)
(x1, x2) = 1− (p2 + p4)n − (p3 + p4)n + pn4 .

(III.7)
This can immediately be generalized to m-

component case following the above outline. Let
c = 2m, and the result is as follows

FX(r)
(x1, x2, ..., xm)

=P(X(r)1 ≤ x1, X(r)2 ≤ x2, ..., X(r)m ≤ xm)



5

=
∑

0≤t1,t2,...,tc≤n
t1+t2+..+tc=n
r≤l1,l2,...,lm≤n

n!

t1!t2!...tc!
pt11 p

t2
2 ...p

tc
c , (III.8)

(III.9)

where p1, p2, ..., pc, l1, ..., lm are defined in the
same manner as two-component case.

C. Deriving the distribution of functions of X(r)

After obtaining the c.d.f. of X(r), we need to
derive the distribution of scoring functions τ(.) of
X(r). Typically, the ‘scoring’ function τ(.) is a
monotone function like max,min, sum [see (8)].
Let Gr denote the c.d.f. of τ(X(r)). When τ is the
max function,

Gr(s) = P(τ(X(r)) ≤ s) (III.10)
= P( max

1≤j≤m
X(r)j ≤ s)

= P(∩mj=1X(r)j ≤ s)
= FX(r)

(s, s, ..., s). (III.11)

Similarly, when τ is the min function,

Gr(s) = P(τ(X(r)) ≤ s) (III.12)
= P( min

1≤j≤m
X(r)j ≤ s)

= P(∪mj=1X(r)j ≤ s)
= 1− P(∩mj=1X(r)j > s)

= 1− F̄X(r)
(s, s, ..., s), (III.13)

where F̄X(r)
is the survival function of X(r). For

the distribution of the sum, for example, of the rth

row, we just adopt the linear transformation on the
X(r), then take limit with respect to other variables.
This is just the ordinary change of variable method
which enables us to get the desired c.d.f. for
monotone functions τ(.) of each rth row.

From the distribution of τ(X(r)), we can com-
pute the probability that we have found the “true”
top-k units at each row. Suppose tr is the minimum
overall score of the current top-k list before probing
the rth row, then

pr , P(The algorithm stops at rth row)

= P(τ(X(r)) ≤ tr) = Gr(tr). (III.14)

Theorem III.1. Assume τ : Rm → R is a non-
decreasing function. Then pr is nondecreasing with
respect to r.

Proof: When r ∈ 1, 2, ..., n− 1 then r + 1 ∈
2, ..., n. As we mine the data ‘deeper’, we have
tr+1 ≥ tr since the top-k list will be updated
only when the overall score of a ‘new’ machine
is larger than that of one of the existing machines.
As they are order(ed) statistics, X(r)j is larger than
X(r+1)j in stochastic order, ∀j = 1, ...,m. Since τ
is non-decreasing function, then τ(X(r)) is larger
than τ(X(r+1)) in stochastic order [see (17)].

From the definition of stochastic order,

pr = P(τ(X(r)) ≤ tr) (III.15)
≤ P(τ(X(r)) ≤ tr+1)

≤ P(τ(X(r+1)) ≤ tr+1) = pr+1.

Hence the result holds.
Using the monotone property of pr, with a pre-

determined threshold confidence level α, we can
stop the the algorithm when pr ≥ α. In this way,
we can find the top-k units with desired confidence
by scanning fewer rows than the TA.

D. Probabilistic TA algorithm

The algorithm then is a probabilistic augmenta-
tion of the top-k ranking algorithm based on TA.

Algorithm

1) Rank each attribute of the original
database in descending order

2) Probe the "sorted" database row-by-row
from the top,
and find the current top-k units after
probing each row

3) Compute the minimum of the overall
scores of the current
top-k units

4) Repeat step 2 and 3 until the
probability of finding the top-k exceeds
the threshold, i.e.,
P(g(X(r)) ≤ tr) ≥ α.

Table II
PROBABILISTIC THRESHOLD ALGORITHM



6

IV. PROBABILISTIC TOP-K QUERY BASED ON
MPRO ALGORITHM

The Minimal Probing (MPro) algorithm [(12)]
was developed to minimize probe ‘cost’ for top-k
queries. MPro differs from TA chiefly in the
relaxation of the sorting prerequisite: in MPro
the data are arrive unsorted and the goal is to
‘order’ as minimally as possible. The MPro
algorithm, then, is a recipe for returning the top-k
units (cases, machines) with iterative sorting of
particular data. In the deterministic case, MPro
is demonstrated to be probe-optimal: i.e. that
the prescribed order for inspecting units has the
minimum iterations. Nevertheless, the algorithm
is designed for deterministic values and ignores
any distributional information for the data. We
introduce here a probabilistic version of the MPro
algorithm which minimizes the probing ‘cost’ for
the top-k query by explicitly assuming the data
are random variables. We illustrate our augmented
algorithm (probing strategy) with an associated
objective (stopping criterion), based on an explicit
assumption about the joint distribution of the data.

A. Explicitly modeling the data

As before, suppose Xij is the score of the jth

component of the ith machine, Xij ∼ N(µij , σ
2
ij),

i = 1, ..., n, j = 1, ...,m. Here we need to
also make explicit the correlation structure be-
tween the components, that is, Corr(Xij , Xij∗) =
Corr(Xkj , Xkj∗) for all i, j, j∗, k.

Thus the distribution of scores of the ith machine
is Xi ∼ N(µi,Σi), where

µi = (µi1, µi2, ..., µim),

Σi = V
1/2
i RV

1/2
i ,

Vi = diag(σ2
i1, σ

2
i2, ..., σ

2
im),

Rjk = Corr(Xij , Xik) , ρjk.

Let X∗ij =
Xij−µij

σij
, then X∗ij ∼ N(0, 1). If we

denote X∗i = (X∗i1, X
∗
i2, ..., X

∗
im), X∗i ’s will be i.i.d

multivariate normal, and the correlation matrix of
X∗i = (X∗i1, X

∗
i2, ..., X

∗
im) is

R =

 1 · · · ρ1m

...
. . .

...
ρm1 · · · 1

 .
We can use sample correlation matrix of the stan-
dardized variables as our estimate for R. In practice,
R is estimated from historical (training) data and
could be used for validation.

The essential difference between the MPro and
TA algorithms is that the entire row of ordered data
is not available in MPro as we iterate. Thus, we
need to calculate some sort of conditional infor-
mation at each iteration and let the units (cases,
machines) enter the ‘top-k’ set based on this con-
ditional criterion.

B. Probing strategy

For TA, we have to probe the data row-by-row;
all components in a row (machine, unit, case) are
inspected simultaneously. In MPro we can probe the
components more flexibly.

Suppose the scoring function is the sum, i.e., the
overall score of the ith machine is

τi =

m∑
j=1

Xij . (IV.1)

Assume the order of the components to probe is
the same for all inspected machines (units, cases)
at each iteation. After probing r components, the
conditional expectation is

E(τi|Xir) =

r∑
j=1

Xij +

m∑
j=r+1

E(Xij |Xir). (IV.2)

Since Xij and Xir are jointly normally dis-
tributed,

E(Xij |Xir) = µij + ΣijrΣ
−1
irr(Xir − µir),

where

Xir = (Xi1, Xi2, ..., Xir),



7

µir = (µi1, µi2, ..., Xµir),

Σijr = Cov(Xij ,Xir),

Σirr = V ar(Xir).

The conditional variance is

Var(gi|Xir) = Var(

m∑
j=r+1

Xij |Xir)

= V ar(Yi|Xir)

= Σiyy − ΣiyrΣ
−1
irrΣ

′
iyr,

where

Yi =

m∑
j=r+1

Xij ,

Σiyy = Var(Yi) =
∑

1≤j,k≤m

Cov(Xij , Xik)

and

Σiyr = Cov(Yi,Xir)

= (
∑m
j=r+1 Cov(Xij , Xi1),

...,
∑m
j=r+1 Cov(Xij , Xir)).

We define the probing score as

Spi , E(τi|Xir) + λSd(τi|Xir), (IV.3)

where λ is the tuning parameter, and Sd(τi|Xir) =√
Var(τi|Xir). We use the probing scores decide

the order of data inspection: i.e., at each iteration,
the algorithm probes the machine (unit, case) with
the highest probing score unless the machine has
been completely probed. The probing score can also
be regarded as the upper bound of the confidence
interval of the overall score, given the information
gained from components that have been probed. The
algorithmic parameter λ we introduce in the probing
score Sp should be chosen using training data and
can serve to optimize the number of iterations..

C. A probabilistic stopping criterion for MPro

Recall that Xir denotes the components of ma-
chine i that have been probed. We sort the ma-
chines ascending according to E(τi|Xir), and let
Wi = τ[i]|X[ir] denote the conditional overall score
with ith smallest mean. Note that Wi is not an
order statistic. Let Y = minni=n−k+1Wi, and
Z = maxn−ki=1 Wi.

The stopping criterion of the algorithm is

P(Y ≥ Z) ≥ α (IV.4)

where α is the pre-determined threshold.
To calculate P(Y ≥ Z), we use P(Y ≥ Z) =´∞
−∞
´∞
z
fy(y)fz(z)dzdy, where

fY (y) =

(
n∑

i=n−k+1

fi(y)

F̄i(y)

)
n∏

i=n−k+1

F̄i(y),

(IV.5)

fZ(z) =

(
n−k∑
i=1

fi(z)

Fi(y)

)
n−k∏
i=1

Fi(y). (IV.6)

Here Fi, F̄i, and fi are the c.d.f, survival function
and p.d.f. of Wi, respectively. In specific, when Wi

is a fixed number, that is, if machine i is fully
probed, fi is the Radon-Nikodym derivative of Fi
[see (26)].

D. An MPro probabilistic algorithm

Algorithm

1) Calculate the probing scores Sp(Q) and
put them in the probing queue Q.top, where
Q denote the observed information.

2) Probe Q.top, update Q.
3) While the stopping criterion is not

satisfied, repeat step 1 and 2.

Table III
PROBABILISTIC MPRO ALGORITHM

E. Properties of the algorithm

The augmentation of the MPro algorithm with
the stopping criteria for explicitly probabilistic data
allows us to demonstrate that the ranking algorithm
can stop as the number of iterations increases.



8

Theorem IV.1. Define Pstop = P(Y ≥ Z), and
let npr denote the total number of probes. Then
Pstop → 1 as npr → n ·m.

Proof: When npr = n ·m, all the components
of all the machines are probed, and all the con-
ditional overall scores are fixed values. Recall that
Wi’s are conditional overall scores sorted ascending
according to their means, then we have P(Y ≥
Z) = P(minni=n−k+1Wi ≥ maxn−ki=1 Wi) = 1.
Thus when npr → n·m , the algorithm stops almost
surely.
As well, the choice of score — using the first and
second conditional moments of τ at each iteration
— is sufficient for the stopping criteria.

Theorem IV.2. The probing scores Sp are ‘suffi-
cient’ to calculate Pstop.

Proof: Y, Z are order statistics of the condi-
tional overall scores. Since the scores are normally
distributed, the conditional overall scores also fol-
low the normal distribution. Recall that the probing
score Sp is linear combination of conditional expec-
tation and conditional standard deviation. The Sp’s
are ‘sufficient’ to calculate Pstop in the sense that
mean and s.d. are sufficient to characterize normal
distribution.

V. SIMULATION STUDY

We used simulated versions of data X to evaluate
the probabilistic augmentations of the TA and MPro
algorithms: rvTA and rvMPro. We simulated the
data as multivariate normal, using parameters of real
degradation data. For each top-k identification al-
gorithm, we adopted two performance benchmarks:
the probe rate and the correct rate.

The probe rate rprobe we define as:

rprobe =
# of probes
n ·m

(V.1)

which describes the portion of the dataset to be
probed. The correct rate rcorrect we defined as

rcorrect =
#{top-k machines identified correctly}

k
(V.2)

which provides a metric to measure the correct-
ness of the algorithm.

A. TA-based algorithm evaluation

Table IV compares the performance of the TA
and rvTA algorithms on these ‘parameters’ of the
algorithm: varying fleet sizes n, component number
m, and size of top-k best set k. Generally the rvTA
algorithm has a slightly lesser probe length at high
levels of correctness. The lack of a large reduction
in probe length is due to a low tolerance level α =
.05: for higher tolerance levels, e.g. less ‘cost’ to
error of missing some of the best/worst units (cases,
machines) the rvTA algorithm outperforms the TA
procedure.

For each parameter setting, we simulate the data
and run the ranking algorithm 100 times; the values
of rprobe and rcorrect in the tables and figures are
averages for each of these 100 runs. The effects of
different parameters rprobe and rcorrect are illus-
trated in Figures 1,2,3,4.

Table IV
THE COMPARISON OF PERFORMANCE BETWEEN TA AND

RVTA

n k m TA rvTA
rprobe rcorrect rprobe rcorrect

10 2 2 .346 1 .351 .970
10 2 3 .422 1 .440 .975
50 2 2 .117 1 .114 .965
50 5 2 .234 1 .221 .956
50 10 2 .381 1 .364 .951

100 2 2 .065 1 .064 .940

B. MPro-based algorithm evaluation

The MPro algorithm introduces an additional,
tuning, parameter λ — the contribution of the
conditional variance.



9

Table V
THE COMPARISON BETWEEN TWO TOP-K IDENTIFICATION

ALGORITHMS, λ = 2

n k m MPro rvMPro
rprobe rcorrect rprobe rcorrect

10 2 2 .805 1 .460 .930
10 2 5 .700 1 .338 .935
50 2 2 .451 1 .214 .935
50 2 5 .344 1 .143 .910
50 10 2 .741 1 .577 .986
50 10 5 .669 1 .440 .971

We notice that as n grows large, the probing
rate also grows slightly, but the correctness also
improves. As m increases, the probing rate also
drops, yet the correctness remains at the same level.
Both the rprobing and rcorrect increase when k
raises. The probe rate increases then drops as λ
increases from zero — which is also true for correct
rate. In practice the optimal λ could be chosen
using partial data (cross validation, perhaps); we
recommend , as a rule of thumb, to choose λ = 2
when the scores are normally distributed.

Table VI
THE ALGORITHM PERFORMANCE IN DIFFERENT PARAMETER

SETTINGS

n k m λ rprobe rcorrect
10 2 2 0 .435 .925
10 2 2 1 .475 .955
10 2 2 2 .460 .930
10 2 2 3 .470 .930
10 2 5 0 .350 .935
10 2 5 1 .354 .900
10 2 5 2 .338 .935
10 2 5 3 .376 .945
50 2 2 0 .236 .930
50 2 2 1 .218 .930
50 2 2 2 .214 .935
50 2 2 3 .227 .913
50 2 5 0 .179 .910
50 2 5 1 .152 .910
50 2 5 2 .143 .910
50 2 5 3 .155 .945
50 10 2 0 .608 .984
50 10 2 1 .583 .983
50 10 2 2 .577 .986
50 10 2 3 .599 .986
50 10 5 0 .532 .981
50 10 5 1 .451 .988
50 10 5 2 .440 .971
50 10 5 3 .467 .986

C. Comparison with deterministic algorithms

Although the deterministic versions of the algo-
rithms can always identify the top-k units correctly
for TA we notice that it almost always needs to
probe a larger portion of the data. For MPro, though,
the probabilistic version always concludes in less,
sometimes dramatically fewer, iterations. Generally
speaking, as long as false identification of top-k is
not fatal, the r.v.-based versions of the algorithms
can be adopted. This saves the probing ‘cost’ at
the expense of a (in some cases negligibly) lower
correct rate. See Figures 5, 6, 7.

VI. SORTING MULTICOMPONENT
(MULTIVARIATE) DEPENDENT DATA, MORE

GENERALLY.

Without loss of generality let X be a non-negative
multivariate random variable: the process from
which x is drawn, from n machines (units, cases),
each having m components (questions, items, etc).
We can demonstrate that the bounds for proba-
bilistic search and scoring algorithms are set by
the extremal cases of across component dependency
and are measurable by the distribution of the mul-
tivariate order statistics.

Theorem VI.1. The bounds for probabilistic search
and scoring algorithms are set by the extremal
cases of across component dependency and are
measurable by the distribution of the multivariate
order statistics.

Proof:
Let F = (Fj)j=1...M be the family of distri-

butions for all machines; let each Fj be a fam-
ily of univariate distributions indexed by ∆t: say
Fj = (F∆t1

j , ..., F∆tN
j ) such that F

∆t1
(x) >

F
∆t2

(x), ∀x when ∆t1 > ∆t2, in concert with
(8), with F

∆ti
j the residual life distribution for

component j of (ordered) machine i.
Let z be the ordered realizations from x. These z

are not order statistics in the traditional sense since
while xi,· ⊥ xi∗,·, x is drawn from the family of
distributions F . So zij is drawn from Zij which is
distributed F∆ti .



10

Then, since Z·,j is stochastically increasing in
i, as well Zi,· is stochastically larger than Zi∗,·
whenever i < i∗ (22).

Let T (·) be ‘scoring’ or ‘sorting’ function from
RM,+ to R+. Let Ti = T (xi,·), Tzi = T (zi,·)
and then (T(i))i=1..n are the order statistics for the
Ti’s and (Tz(i))i=1..n are the order statistics for the
Tzi ’s. So Tz(1) is the ‘score’ of the stochastically
largest (possible) machine while T(1) is the maxi-
mum observed ‘score’; Tz(N)

is the ‘score’ of the
stochastically smallest (possible) machine and T(N)

is the minimum observed ‘score’.
Essentially, the sorting algorithm in (8) compares

Tzi with Tz(i) — both are F measurable but Tz(i) ∈
F∆ti,1,...,∆ti,M = (F∆ti

1 , ..., F∆ti
M ) whereas T(i) ∈

F ⊃ F∆ti,1,...,∆ti,M .
To ask for what conditions will statistics on

F∆ti,1,...,∆ti,M yield inference on F and vice versa
is to say: what distributional results can be gleaned
from the data for each machine without having to
complete the system wide search and, vice-versa,
from distributional results how can the machines
be probabilistically sorted.

Let C and C be a copula and copula survival
function (see (19)) on F , s.t. each maps IM to I;
C is familiar for the extremal assumptions about
degradation (and thus multivariate/component de-
pendency):

Series

C↑ = C(F) =

m∧
j=1

Fj

Parallel

C↓ = C(F) =

m∨
j=1

Fj

We can call C↑ and C↓, colloquially, dependency
structures where the machines are completely weak-
ened by failure and not weakened by failure.

We are interested in the distribution of the
‘scores’

σC(F)(t) =

ˆ
· · ·
ˆ
T (x)<t

dC(F) (VI.1)

under different assumptions about the ‘frailty’ of
the machines. Frank et al. (7) (to pick one reference)
demonstrate these bounds

sup
T (x)=t

C(F) ≤ σC(F)(t) ≤ inf
T (x)=t

C(F) (VI.2)

which is

sup
T (x)=t

C(F1, ...,FM ) ≤ σC(F)(t)

≤ inf
T (x)=t

C(F1, ...,FM ) (VI.3)

But Fj is indexed, so for T (·) increasing

sup
T (x)=t

C(F1, ...,FM ) ≤ sup
T (x)=t

C(F∆t1
1 , ..., F∆t1

M )

≤ σC(F)(t) ≤ inf
T (x)=t

C(F∆tN
1 , ..., F∆tN

M )

≤ inf
T (x)=t

C(F1, ...,FM )

(VI.4)

But the bounds in the middle inequality are
F∆t1,1,...,∆t1,m and F∆tn,1,...,∆tn,m measurable, re-
spectively — i.e. measureable on the row-wise
extremal order statistics. Note lastly that

C↑ = sup
T (x)=t

C(F∆t1
1 , ..., F∆t1

m ) ≤ σC(F)(t)

≤ inf
T (x)=t

C(F∆tN
1 , ..., F∆tn

m ) = C↓

This suggests that any type of frailty or inter-
machine (unit, case) dependency is ‘captured’, with
respect to the method of evaluation T (·), by the
order statistics of the completely weakened by
failure and not weakened by failure regimes. This
is: the distribution of the ordering statistic — the
sorting score — T (·) = (T1, ..., TN ) is bound
by the distributions of the stochastically extremal
machines. A fortiori, we have bounds on a dou-
bly stochastic measure via a collection of singly
stochastic distributions.

Notice that this is a result that holds even if the
machines are not identically distributed.



11

A. Conclusion

We offer a methodology to identify top-k among
a fleet of units using sensor-based prognostic infor-
mation, in particular, but the method can be imme-
diately applied to any situation where the best/worst
k of n multivariate observations are desired. Both
the TA and MPro algorithms rely on sorting the
multivariate data: partial in the MPro algorithm
and complete for TA. Exploiting probabilistic in-
formation — i.e. explicitly assuming the data are
instantiations of random variables — allows us to
improve on the ordinary deterministic versions by
using the within machine (unit, case) dependency.
Exploiting the ranking methodology under proba-
bilistic assumptions can significantly reduce the cost
of data-acquisition.

In particular, we have derived the joint distribu-
tion of the data generated by the Brownian motion
degradation model for prognostic data from (9).
Using distributional information as additional input,
our versions of the TA and MPro algorithms return
the top-k result with only a small portion of the
data. This innovation requires less sensor probes
— costly for prognostic maintenance data — than
the existing versions of the algorithms. When we
consider correctness or tolerance level (α), we also
identify the top-k units with correct rate higher than
90%.

The approach proposed in this paper has several
immediate useful extensions. Here we have applied
the algorithm to find the top-k machines. In fact,
the method can be applied to identify either the
”top” or the ”bottom” units. To find the worst k
units, we would merely add an negative sign to
the scores, and the top-k result for the transformed
variables are the bottom-k for the original scores.
Lastly, when there are errors associated the
estimates of the parameters µ0, µ1, σ0, σ1, σ —
specific to either algorithm — we can adjust the
distribution of the data and apply our algorithm to
them. The results hold theoretically, as well, for
non-identical families of distributions.

In this paper, for the rvMPro algorithm, we
have determined the probing schedule, i.e.,the order
of components to probe, according to former expe-

rience (8). This is to say we have relied on estimates
of the parameters of the multivariate (normal) distri-
bution for X, specifically the correlation structure.
Future research can generate an optimal probing
schedule by yielding good information about the
multivariate dependency/correlational structure. An
optimal schedule could more perfectly exploit the
dependence among the critical components to fur-
ther lessen data probing iterations.

Lastly we note that the methodology here has
wide ranging applications in the social and eco-
nomic sciences. Multivariate, cross-national index-
ing, in particular, relies on sorting and scoring
dependent information across administrative bound-
aries (3). The techniques here are designed to
readily return the extremal multivariate observations
and can be adjusted for tolerance and sensitivity to
the cost of data acquisition.

VII. FIGURES

Figure 1. The comparison between rvTA and TA algorithms -
Effect of n



12

Figure 2. The comparison between rvTA and TA algorithms -
Effect of k

Figure 3. The comparison between rvTA and TA algorithms -
Effect of α

Figure 4. The comparison between rvTA and TA algorithms -
Effect of ρ

Figure 5. The comparison between two top-k identification
algorithms - Effect of n



13

Figure 6. The comparison between two top-k identification
algorithms - Effect of m

Figure 7. The comparison between two top-k identification
algorithms - Effect of k

REFERENCES

[1] J. Smith C. Li A. Natsev, Y. Chang and
J. Vitter, Supporting incremental join queries
on ranked inputs, VLDB 2001 (2001), 281–
290.

[2] C. Ellis K. Munagala J. Yang A. Silberstein,
R. Braynard, A sampling-based approach to
optimizing top-k queries in sensor networks,
ICDE 2006 (2006), 68–78.

[3] Kobi Abayomi and Gonzalo Pizarro, Monitor-
ing the united nations millennium development
goals: A straightforward (bayesian) method-
ology for a cross-national index, Journal of
Social Indicators (to appear).

[4] D. Suciu C. Re, N. Dalvi, Efficient top-k query
evaluation on probabilistic data, ICDE 2007
(2007), 886 – 895.

[5] M. Soliman F. Ilyas, G. Beskales, A survey of
top-k query processing techniques in relational
database systems, ACM Computing Surveys
40 (2008), no. 4, 1–58.

[6] R. Fagin, Combining fuzzy information from
multiple systems, PODS 1996 (1996), 216–
226.

[7] M.J. Frank, R.B. Nelsen, and B. Schweizer,
Best possible bounds for the distribution of a
sum - a problem of kolmogorov, Probability
Theory and Related Fields 74 (1987), 199–
211.

[8] N Gebraeel, Prognostics-based identification
of the top-k units in a fleet, Ieee Transactions
on Automation Science and Engineering 7
(2010), no. 1, 37–48.

[9] NZ Gebraeel, MA Lawley, R Li, and JK Ryan,
Residual-life distributions from component
degradation signals: A bayesian approach, IIE
Transactions 37 (2005), no. 6, 543–557.

[10] Andrew Gelman, John Carlin, Hal Stern, and
Donald Rubin, Bayesian data analysis, Chap-
man & Hall/CRC, 2004.

[11] G. Kollios D. Srivastava K. Yi, F. Li, Effi-
cient processing of top-k queries in uncertain
databases with x-relations, IEEE transactions
on knowledge and data engineering 20 (2009),
no. 12, 1669–1682.

[12] S. Hwang KC. Chang, Minimal probing: Sup-



14

porting expensive predicates for topk queries,
SIGMOD 2002 (2002), 346 – 357.

[13] C. Lu and W Meeker, Using degradation mea-
sures to estimate a time-to-failure distribution,
Technometrics 35 (1993), 161–174.

[14] KC. Chang M. Soliman, I. Ilyas, Top-k query
processing in uncertain databases, ICDE 2007
(2007), 896 – 905.

[15] R. Schenkel M. Theobald, G. Weikum, Top-
k query evaluation with probabilistic guaran-
tees, VLDB 2004 30 (2004), 648–659.

[16] W. Lee D. Lee M. Ye, X. Liu, Probabilistic
top-k query processing in distributed sensor
networks, ICDE 2010 (2010), 585–588.

[17] Albert W. Marshall and Ingram Olkin, In-
equalities: Theory of majorization and its ap-
plications, Academic Press, 1979.

[18] A. Elwany N. Gebraeel and J. Pan, Residual
life predictions in the absence of prior degra-
dation knowledge, IEEE TRANSACTIONS
ON RELIABILITY 58 (2009), no. 1, 106–117.

[19] Roger Nelsen, An introduction to copulas,
Springer, 2006.

[20] S. Nepal and M. Ramakrishna, Query process-
ing issues in image(multimedia) databases,
ICDE 1999 (1999), 22–29.

[21] A. Lote R. Fagin and M. Naor, Optimal ag-
gregation algorithms for middleware, PODS
2001 (2001).

[22] M Shaked and J Shantikumar, Dynamic con-
struction and simulation of random vectors,
1990.

[23] Y. Zhang J. Pei W. Wang W. Zhang, X. Lin,
Threshold-based probabilistic top-k dominat-
ing queries, The VLDB Journal 19 (2010),
no. 2, 283–305.

[24] W Wang, A model to determine the optimal
critical level and the monitoring intervals
in condition-based maintenance, International
Journal of Production Research 38 (2000),
1425–1436.

[25] G. Whitmore, Estimating degradation by a
wiener diffusion process subject to measure-
ment error, Lifetime Data Analysis 1 (1995),
307–319.

[26] David Williams, Probability with martingales,

Cambridge Mathematical Textbooks, Cam-
bridge University Press, 1991.


	Introduction
	Commensurate work

	Degradation Modeling
	Degradation model
	`Health' measurement:

	Probabilistic top-k query based on the Threshold Algorithm
	The data(base) as random variable(s): X
	Deriving FX(r), the c.d.f. for X(r)
	Deriving the distribution of functions of X(r)
	Probabilistic TA algorithm

	Probabilistic top-k query based on MPro algorithm
	Explicitly modeling the data
	Probing strategy
	A probabilistic stopping criterion for MPro
	An MPro probabilistic algorithm
	Properties of the algorithm

	Simulation study
	TA-based algorithm evaluation
	MPro-based algorithm evaluation
	Comparison with deterministic algorithms

	Sorting multicomponent (multivariate) dependent data, more generally.
	Conclusion

	Figures

