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ABSTRACT

We investigate the dependence between ethanol (biofuel) production and competing
uses for corn via a case study of U.S. corn production from 1980 to 2009. Agricultural
models are often used to estimate this effect of biofuel production on crop production and,
correspondingly, land use change: these models can be validated with statistical analysis of
dependency — or competition — among crop uses. Standard statistical tests for indepen-
dence are inappropriate, however, because the uses of an agricultural crop are constrained:
total crop use is always the sum of the constituents. Commonly used methods for testing
independence in compositional data rely upon restrictive distributional assumptions: either
the multivariate log-normal distribution or a particular choice from the family of Liouville
distributions.

We develop a general method for these compositional distributions via the Kolmorgorov-
Smirnov probability distance and the empirical copula. We apply this method to determine
competition between ethanol feedstock production and other alternate products of corn. We
find evidence of competition among the constituents of corn yield, particularly with respect
to ethanol production.

Keywords: Ethanol production, Biofuel, Independence tests, Empirical copula, Kolmogorov-
Smirnov distance.

1 Introduction

1.1 Ethanol for Biofuel

The Energy Independence and Security Act (EISA) of 2007 mandates an increase in ethanol
production to 36 billion gallons per year by 2022.(110th US Congress, 2007a) In 2008 the
United States produced 9 billion gallons of ethanol fuel — an increase of more than 6000
percent since 1980.(Renewable Fuels Association, 2009) At the same time, the total U.S. corn



yield has less than doubled. Increases in the remaining constituents of corn use are similar —
between 50 and 200 percent. See Figures 1 and 2.

●
●

●

●
●

●

●
●

●

●
● ●

●

●

●

●
● ●

●
●

● ●
●

●
●

● ●

●

1980 1985 1990 1995 2000 2005

0
.5

1
.0

1
.5

2
.0

Year

F
ra

c
ti
o

n
a

l 
In

c
re

a
s
e

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1980 1985 1990 1995 2000 2005

0
2

0
4

0
6

0
8

0

Year

F
ra

c
ti
o

n
a

l 
In

c
re

a
s
e

Figure 1: Fractional increase in corn production and constituents, 1980-2007, in color: Resid-
ual food, feed stocks, exports, ethanol, and total output. The smoothed curve suggests the
trend. Yearly values are ratios to 1980 production of/by each constituent output. Total corn
yield, food and feed stocks have increased similarly; residual food output has increased more
dramatically. Exports have decreased relative to 1980. Left hand graph excludes ethanol frac-
tional increase: fractional increases for residual food, feed stocks, exports and total output
appear flat with respect to increase in ethanol production. All data in thousands of bushels.

The environmental impacts of this mandate (net energy budget, effect on corn based commodi-
ties, greenhouse emissions, etc.) are unresolved, significant (110th US Congress, 2007b), and
addressed elsewhere (Tilman, Socolow, Foley, Hill, Larson, Lynd, Pacala, Reilly, Searchinger,
Somerville and Williams, 2009). Currently, models of land use change from biofuel pro-
duction either use basic assumptions about the extent to which biofuel production displaces
other uses of the feedstock, or use agricultural economic models (Keeney and Hertel, 2009),
(Agency, 2007), (Thompson W., 2009), (De La Torre Ugarte D. G., 2007). As biofuel produc-
tion grows, there is potential to validate the assumptions of these models using data on crop
production and biofuel production.
We develop a method for using constrained sum data to investigate how increased bioenergy
production affects production of other agricultural crops. These phenomena can be examined
from either a crop production perspective, as is done here, or from land use; these results are



parallel and mediated by yield. At one extreme, increasing biofuel production from corn could
yield more corn production and no change in the production of corn for other uses. Oppositely,
this increase could result in an immediate reduction in other uses of corn with the increased
use of corn for biofuel. The methodology can have wide applications and specific use in other
settings: the influence of sugarcane-derived ethanol production on land use in Brazil, say;
the influence of soy biodiesel production on land used for soy production (note that soy and
corn production in the US are not independent - many farms practice corn-soy rotations); the
influence of biofuel production from non-food crops on food crop production.
Here, we use U.S. data on the use of corn for ethanol production to illustrate a method for
statistical evaluation of how changes in crops and land use are affected by bioenergy develop-
ment.

2 Dependence/Independence in Constrained Sum Data

2.1 Constituents of Corn Use: Compositional Data

The uses of corn considered in this paper include:

• Feed and residual use

• Exports

• Food and Industrial uses

• Ethanol

The category food and industrial uses include corn use for high fructose corn syrup (about
40 percent), glucose and dextrose (about 20 percent), starch (about 20 percent), alcohol for
beverage and manufacturing (about 10 percent), and other (about 10 percent). The data are 30
years — from 1980 to 2009 — of the allocations of total U.S. corn production in units of mass
(USDA, 2010). Preparatory illustrations of the fractional increases (1) and relative fractions (2)
illustrate the nominal increase in ethanol output and the relative increase in corn allocation to
ethanol production.
Figure 2 is an illustration of the statistic of interest: the joint distribution of the relative fractions,
modulo the total yield, over time. This multivariate distribution — strictly positive, sum fixed
and inferior or equal to one — on the simplex is called a compositional distribution and arises
in many contexts (see (Aitchison, 1997), (Barcelo-Vidal, Martn-Fernandez and Pawlowsky-
Glahn, 2001), (Pawlowsky-Glahn and Mateu-Figueras, 2005), and especially (Aitchison, 1986)).
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Figure 2: Joint distribution of fractional uses of corn, ethanol in red. The heights of the bars
are the ratio of the constituent fraction to the total corn production (normalized to 1 for each
year). The graph is a representation of a three-dimensional positive simplex, a four dimensional
composition in Aitchison terminology: the heights are the joint distribution modulo the total
production (and variation).(Aitchison, 1982) Dependence in this compositional distribution is a
function of the statistic represented by this illustration.

Let

x = (x1, ..., xk) (2.1)

be a basis or open vector of positive quantities, x ∈ Rk+ — the k dimensional positive hyper-
plane. In this example the positive quantities are the constituents of total corn production, in
order (in units of mass): x = (xeth, xfood, xfeed, xxport); corn to ethanol production, food and
industrial, feed, and export.
Let

yj = xj/

k∑
j

xj (2.2)

with y = (y1, ..., yk) the vector of fractions; in the Aitchison (Aitchison, 1981b) terminology the
composition of the basis x. Here the yj are the (relative to the total) fractions of ethanol, food
and industrial, feed, and exports (mass) of corn illustrated in 2.



Isolating dependence in a compositional distribution is non-trivial: the restriction of the distribu-
tional shape to the simplex imposes dependency — in particular linear dependence — in the
same way segments on a fixed interval are necessarily dependent. Standard inspection and
testing of a correlation matrix is insufficient for tests of independence of the compositional dis-
tribution. Dependence metrics — like correlation — based upon Euclidean distance are in fact
conclusively inappropriate for compositional data (see (Aitchison, 2000)). This characteristi-
cally constrains or wholly excludes standard methods and tests for multivariate independence,
such as tests of pairwise correlation or multivariate correlation (e.g. Fisher’s Z), or multivariate
tests relying on distributional assumptions on the covariance matrix (e.g. Wishart type tests).

2.2 Distributional Models for Compositional Data

There are two common, apposite methods for addressing dependency in distributions of pro-
portions (distributions on the simplex):
The first is to use a transformation on the compositional data, from the sample space of the
simplex to the positive real hyperplane and investigate tests in the resultant distribution. The
log-ratio transformation is popular; tests of independence are on the constrained covariance
matrix of the transformed data (see (Aitchison, 1981b)). A second approach is to conduct
testing on the simplex space via a necessary generalization of the Dirichlet distribution —
which only admits independent or neutral components — to a broader class, i.e. the Liou-
ville distribution (see (Connor and Mosimann, 1969) and (Rayens and Srinivasan, 1994), or
(Barndorff-Nielsen and Jorgensen, 1991)).

2.2.1 Transform the simplex to the plane

A log-ratio transformation sets

v j
m

= log(
yj
ym

) = log yj − log ym (2.3)

in a slight modification of Aitchison’s notation (where vj = log(yj/yk+1)).
Here, since the total is fixed and known, the residual is yk+1=0 and Aitchison’s vj is undefined.
This notation is a natural and useful affixation to Aitchison’s; v j

m
is the log of the relative fraction

of constituent j to constituent m.
Aitchison also defines yk+1 = 1 −

∑k
j yj ; in this example

∑k
j yj = 1 since the total corn yield

is just the sum of the constituents. Thusly, here, (y1, ..., yk−1) ∈ Sk−1 — the k − 1-dimensional
simplex — versus the Aitchison method where y ∈ Sk.
In the original notation vj is the log of the relative fraction of constituent j to the residual
component of the basis, which is in the augmented simplex S∗k = {y, yk+1} = {y : yj , (j =

1.., k+ 1),
∑

j yj = 1}: Sk and S∗k generate the same equivalence classes; the augmentation S∗k
is overdetermined. Here, however, the conditional distributions of the components are not as-
sumed equivalent — in fact the conditional dependence appears to vary by choice of ‘residual’
m , and merits component-wise inspection. This augmentation is, in fact, heuristically similar to



subcompositional independence, introduced in (Aitchison, 1982). Complete subcompositional
independence is independence among each of the 2k − 1 subsets of the composition.
The log-ratio transformation, v(·), maps the k-dimensional simplex (Sk) to the k-dimensional
real plane (Rk); the logistic function (yj = evj

1+
∑

j vj
) is the inverse function. Thus the proportions,

on the simplex, are mapped to the real hyperplane.
Aitchison (Aitchison, 1981a) advocates the use of the log-normal distribution for the vector of
log transformed proportions v in tests of independence: a variance-covariance matrix (Σ) is
sufficient for dependency in the log-normal distribution.
Under a composition the covariance matrix has this form:

Σv ∝ diag(ω1, ..., ωk) + ωk+1, (2.4)

where ωj > 0, ∀j — thus the variance-covariance matrix is non-diagonal, even on an indepen-
dent composition and strictly positive.
A test of independence in this setting is with respect to a null hypothesis where Σv — the
covariance matrix of the transformed composition — is constrained to the positive orthant and
proportional to the units of the residual component. Aitchison proposes a Wald type likelihood
ratio test, where the test statistic is iteratively estimated due to the constraints on the support
of the parameter space (Σv ≥ 0 and proportional to the choice of yk+1).

2.2.2 Address the simplex directly

In contrast with Aitchison’s likelihood ratio test for dependency in the composition, on the data
transformed to Rk, Rayens’ fits a Liouville distribution (a generalization of the familiar Dirichlet
distributions for proportions: see Equations 2.5 and 2.6) to Dirichlet marginals by choice of
dependency function g to the data on Sk. Both approaches are iterative: the parameters of
both the Liouville and Aitchison’s constrained log-normal must be estimated numerically (see
(Rayens and Srinivasan, 1994) and (Aitchison, 1981b) for illustration).
The Dirichlet model for (y1, ..., yk);

∑k+1
j yj = 1; yj > 0 ∀j, with parameters α = (α1, ..., αk+1)

is:

dF (y) ∝ (1−
∑
j

yj)
αk+1−1 ·

∏
j

y
αj−1
j (2.5)

with α0 ≡ 0 (see (Gupta and Richards, 2001)), and dF (·) the density.
Connor and Mossiman characterize a vector of proportions (y1, ..., yk+1) as Dirichlet distributed
(Connor and Mosimann, 1969), (James and Mosimann, 1980). The Dirichlet class, however,
is only suitable for modeling random vectors that have substantial independence. This depen-
dency characterization is insufficient for non-independent, or non-completely neutral propor-
tions (see (Aitchison, 1981b) and as well (Rayens and Srinivasan, 1994)): compositional data
that are positively associated cannot be modeled via the Dirichlet distribution which precludes
an immediate (parametric) test of independence.



Rayens and Srinivasan propose the generalized Liouville distribution — a generalization of the
Dirichlet distribution — as a richer model for compositional data under dependence (Rayens
and Srinivasan, 1994).
A Liouville distribution is

dF ∝ h(
∑
j

yj)
∏

y
αj−1
j (2.6)

with αj > 0 (as before) and h some function. Note that when h(t) = 1 − t the Liouville
distribution is the special case Dirichlet distribution with αk+1 = 1.

3 Methodology: Independence via Probability Distance

While Aitchison’s use of the well-known log-normal distribution leads directly to independence
testing via Wald’s test, Rayens’ approach for the Liouville distribution does not suggest a natu-
ral procedure for independence declaration. In fact, any reasonable procedure must restrict h
within a class (linear, say) and test on introduced hyperparameters.
We choose to estimate dependency on log-ratio transformed data without assuming a log-
normal distribution. We estimate dependency in the composition via replicates drawn from a
simple version of the Liouville family of distributions. In the Liouville family h is an additional
parameter of interest for estimation — the choice of h governs the admissible dependence
structure for y.
We, in an alloy and extension of Aitchison’s (impose a log-normal distribution after transforma-
tion) and Rayens’ (fit a model directly to the simplex) methods, test for independence using
distance on probability measures. This can be seen as blend of the approaches: we transform
the sample data via the log-ratio; exploit the natural role of the Dirichlet distribution in neu-
trality/independence to generate replicates with identical marginal distributions; and conduct
independence testing using the Kolmogorov-Smirnov (KS) probability measure of distance.
This method allows us quickly construct sub-compositions of the data, address independence
testing beyond neutrality, without fitting a particular (non-neutral) Liouville distribution.
In the first step, we apply Aitchison’s log-ratio transform m-fold times on the observed data,
holding each component of the data as the residual singly. Using this transformation, we
can find the empirical joint distributions of the compositions with one constituent as ‘residual’,
i.e. the conditional joint dependence among the constituents, with respect to the ‘residual’
constituent. We calculate the empirical copula cumulative distribution function (CDF) Fn(t)

and the CDF for each margin, Fj(tj), and use it to calculate the KS or L1 metric as a distance
from independence.
We then exploit the special role of the Dirichlet as the neutral distribution to generate marginally
equivalent multivariate replicates. We can then generate T , say, replicates setting α = ȳ =

(ȳ1, ...ȳk) as the coefficients of Dirichlet distribution, where ȳi is the mean of vector yi. These
replicates offer a simulated distribution for the distance from independence in a non-neutral
setting: these k-dimensional random, sum-constrained, positive replicates are
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Figure 3: Scatterplots of log-ratios of constituents of total corn production (vjm), labeled by
years. m = (eth, feed, food, export, total) in plots (a)-(e), in order. Observed log-ratios
are labeled by year. Loess smoothed curve in red. 1980 and 2009 are highlighted darker.
Correlation coefficients (for linear pairwise dependence) are in each opposite panel - note
pairwise correlations are inflated for compositional data. The dependence among the log-ratios
appears to vary by choice of ‘residual’ m.

marginally Dirichlet equivalent but jointly Liouville distributed — as such they are not necessar-
ily neutral or jointly independent. This allows generation of measures of association or distance
measures — computed on these replicates — to envelop dependency beyond mere neutrality
The last step is to use the simulated results for KS distances of all the multivariate replicates
and the KS distance calculated from the observed data to calculate the p-value, or probability



of dependency, sub-composition by sub-composition.
This technique can flexibly allow independence testing via a variety of similar metrics, and it is
in the direction of the more complete sub-compositional independence suggested by Rayens
and Srinivasan (Rayens and Srinivasan, 1994).

3.1 Our Scheme

While Aitchison’s use of the well-known log-normal distribution leads directly to independence
testing via Wald’s test, Rayens’ approach for the Liouville distribution does not suggest a natu-
ral procedure for independence declaration. In fact, any reasonable procedure must restrict h
within a class (linear, say) and test on introduced hyperparameters.
We choose to estimate dependency on log-ratio transformed data without assuming a log-
normal distribution. We estimate dependency in the composition via replicates drawn from the
Liouville family of distributions. In the Liouville family h is an additional parameter of interest
for estimation — the choice of h governs the admissible dependence structure for y.
Our approach is to approximate the broader Liouville class by introducing additional in marginally
Dirichlet replicates.

• The estimates α̂ = (α̂1, ..., α̂k) of α = (α1, ..., αk) are the sample means of the composi-
tion data y; the sampling error is order n−1/2.

• Marginal Dirichlets can be generated directly from a version of Equation 2.5, or from any
positive distributions with a sum constraint. Gamma and Beta distributions are candi-
dates: (Gelman, 2004) demonstrates a hierarchical approach with hyperparameters.

• To approximate Liouville replicates:

(i) For/at each set of replicates yα̂,t, t = 1, ...T , pick at random 1 ≤ j, j′ ≤ k

(ii) Pick random ε ∈ [0, 1]

(iii) Reassign yj = yj + ε and yj′ = yj′ − ε

The neutrality of the Dirichlet is a weaker independence than the full subcompositional indepen-
dence available in the generalized Liouville family ((Rayens and Srinivasan, 1994)). Our proce-
dure, modulo the randomization mechanism for ε, introduces broader dependency in marginal
Dirichlets without resorting to direct fitting of one Liouville distribution or another (choice of h).
As T →∞ the replicates will yield — infinitely often — non-neutral replicates.
While the logistic-normal class is closed to subcompositions, the dependency within v j

m
is not

invariant to choice of m. We exploit the log-ratio transformation to easily investigate subcom-
positional dependency (here for subcompositions of dimension 3), not to test independence via
the logistic normal distribution. This operates in context with the generalized Liouville family,
where the choice of h (see eq. (2.6)) is akin to choosing the residual of the simplex.



3.2 KS distance from Independence as Measure of Association

The Kolmorogov-Smirnov distance is:

Dn = sup
t
|Fn(t)− F (t)| (3.1)

Asymptotic convergence of this distance to a Chi-Squared distribution under the hypothesis v

are generated with common distribution F is a well-known result (Williams, 2001). A multivari-
ate version of this statistic is

Dn,k = sup
t
|Fn(t)− F (t)| (3.2)

For t = (t1, t2) the distance is a probability measure on Kendall’s distributions; Chi-Square con-
vergence does not hold (Nelsen, 2003). Similar — multivariate — versions of the Kolmorogov-
Smirnov distance are investigated in ((Justel A, 1997)) and ( (Fasano and Franceschini, 1987)).
The first paper relies upon Rosenblatt’s iterative transformation of the data ((Rosenblatt, 1952))
by conditionally independent cumulative distributions and the second requires Gaussian data;
neither paper offers distributional results for k > 2.
Let u = (u1, ..., uk), where each uj = Fj(vj), Fj the distribution function for vj . Let the joint
distribution for v be F (v). The copula for u is

C(u) = F (F1(v1), ..., Fk(vk)) (3.3)

the mapping from Ik to I; the shape of the joint distribution F fixed to the unit hypercube Ik

(Nelsen, 1999). The Kolmogorov-Smirnov statistic (distance) for multivariate independence
can be written:

DΠ
n,k = sup

t
|Fn(t)−

∏
j

Fj(tj)|. (3.4)

Using (3.3), this is, now for v

DΠ
n,k = sup

u
|Cn(u)−

∏
j

uj |. (3.5)

by definition of multivariate independence, with Cn(·) a multivariate version of the empirical
copula:

Cn(u) =
#{t | t1 ≤ F−1

1 (u1), ..., tk ≤ F−1
k (uk)}

n
(3.6)

where #{·} is cardinality and F−1 is the inverse distribution function (see (Deheuvels, 1979)
and (Wolff, 1980)). This statistic is the L∞ distance between the empirical joint and indepen-
dent distributions with equivalent margins. Our procedure:

• Fit a Dirichlet distribution (i.e. estimate α̂ = (α̂1, ..., α̂k) for α = (α1, ..., αk)) to the compo-
sition data y.



• Generate T Dirichlet replicates, parameter α̂, each of dimension n× k:
(yα̂,1, ...,yα,T ).

• Compute m = 1...k versions of Aitchison’s log-ratios on the replicates:
vα̂,1
m
...,vα̂,T

m

• For m = 1..k compute DΠ,1
n,k
m

, ..., DΠ,T
n,k
m

of

DΠ
n,k = sup

t
|Cn(uα)−

∏
j

u
α̂j

j |. (3.7)

where uα̂j = Fn,j(v
α̂j

j ) as a semi-parametric version of equation (3.4).
This yields a distribution for the statistic under an independence hypothesis among the compo-
sitions — a direct result of the neutrality of the Dirichlet distribution. Moreover, them versions of
the statistic, DΠ,1

n,k
m

, ..., DΠ,T
n,k
m

, are proxies for tests of complete subcompositional independence.

These statistics are calculated on the log-ratios (v) of the replicates, and not the Dirichlet
draws for this reason: picking each of m components to serve as ‘residual’ in via the basis (x)
or composition (y) requires m estimates of α and m-fold random draws.
More recent work ((Genest and Rmillard, 2004) and (Genest, Quessy and Rmillard, 2006))
relies upon distributional specification of the copula (Kendall’s type distributions, see (Nelsen,
2003) and (Genest and Rivest, 2001)) and the resultant transformed processes do not yield
distributions for the multivariate Kolmorogov-Smirnov distance, do not specifically address de-
pendency in the compositional data setting, and illustrate only k = 2, 2 and 5.
In short we offer a test of dependence via the L∞ norm: this is the Kolmogorov-Smirnov
distance. This test of dependence is semi-parametric in that the replicates are generated
via α̂ but the distance from independence is calculated via the empirical probability integral
transform or the multivariate order statistics using the empirical copula. The distance statistic
DΠ
n,k is Euclidean, but on the probability measure space — i.e. modulo the appropriate and

flexible choice for the fixed marginals of v.
We prefer this test for multivariate composition data, especially as k increases. For large k the
support of elliptical distributions (such as the normal and log normal) — the setting for much
analysis of compositional data — migrates into the extreme tails.

4 Results

Figure 3 illustrates the data we test for independence. Each of the subplots (a)-(d) are the
joint distributions of the compositions with one constituent as ‘residual’. The plots illustrate the
conditional joint dependence among the constituents, with respect to the ‘residual’ constituent.
The plots illustrate the pairwise dependence among the joint conditional distributions; a LOESS
(smooth regression) curve is fit on each pair (see (Cleveland, 1979)). The plots and LOESS
fits suggest dependency exists within the subcompositions; the pairwise plots, though, are
imperfect illustrations for multivariate dependency. The data in the plots are labeled by year.
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Figure 4: Histograms of the distributions of distances from independence-neutrality
(DΠ,1

n,km
, ..., DΠ,T

n,km
), for m = (eth, feed, foodandindustrial, export, total) in plots (a)-(e), in

order. Here n = 30, k = 3, 4, T = 1000. The area in red are values above the observed DΠ

for each choice of ‘residual’. These areas are analogs of p-values for the test of distance from
independence. The joint distributions of the compositions with respect to ethanol, feed, and
exports are far from independence: the observed p-values — 0.024, 0.067, 0.112, in order.
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Figure 5: Plots of sub-compositions with respect to ethanol. Panel (a) is the log-ratios of food
and industrial vs. feed; panel (b) is export vs. feed; panel (c) is exports vs. food and industrial.
The graphs illustrate the competition or dependency among the remaining constituents after
the residual or fixed effect of corn allocated to ethanol production has been account for (in
each year). Labels are abbreviated years. The rates of decrease in the log ratios at each pair,
from 1980-2007, are .89, 1.08 and 1.21, in order.



These data are the observed values of v j
m

— the log-ratios of the compositions.

We do not fit a logistic-normal distribution (Aitchison and Shen, 1980) to the data; in fact,
we make no distributional assumption in the calculation of the distance from independence,
beyond the utilization of random, marginal Dirichlets as replicates for the compositional data.

4.1 Statistical Dependency among Constituents of Corn Uses

Figure 4 is the distributions of the statistic for the test of independence (DΠ
n,k); for the null com-

position — all of the constituents of corn uses together — and for each of the subcompositions.
The observed statistic for each is highlighted by the leftmost border of the red shaded area:
the shaded area shows the replicates that are greater than the observed distance. The statistic
increases with distance from independence; thus the shaded areas are simulated p-values for
the compositions.
The subcompositions with respect to ethanol, feed and exported corn are highly significantly
dependent, with p-values of .024, .067, and .112 respectively.
The remaining subcomposition — with respect to food and industrial — and the null composi-
tion have p-values for dependence of .995 and .988 which do not suggest dependence.
The distance statistics are scalar measures for the multivariate dependency within each (sub)
composition. The joint distribution within each of the sub-compositions furnishes the condi-
tional dependency with respect to the residual component. The (highly) significant values of
distance from independence for the subcompositions with respect to ethanol, exports and feed
stocks indicate that the values of these components are strongly associated. The existence
of competition among these components, in relative fraction of corn yield, is an interpretation.
In fact, the significant dependence in the subcomposition with respect to ethanol suggests
strong competition among the remaining constituents once the ethanol fraction is accounted
for. Conversely, the observed value of the dependency statistic for the subcomposition with re-
spect to food and industrial is insignificant. This is a possible indication that food and industrial
allocations are not affected by competition among the other components.

4.2 Competition among Constituents of Corn Use

The panels in 5 are scatterplots of the log-ratios of the remaining constituents of corn-yield
modulo the ethanol fraction, for every year. The illustrations suggest strong competition among
the remaining constituents after the fixed effect of ethanol is removed: each fraction, labeled
by year within each panel, decreases almost monotonically from 1980 to 2007.
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Figure 6: Plots of sub-compositions with respect to exports. Panel (a) is the log-ratios of food
and industrial vs. ethanol; panel (b) is food vs. feed stocks; panel (c) is ethanol vs. feed stocks.
The graphs illustrate the competition or dependency among the remaining constituents after
the residual or fixed effect of corn allocated to exports production has been accounted for (in
each year). Labels are abbreviated years.

The log-ratio pairs in each panel decrease in each panel. The allotments of corn to food and



industrial, feed stocks and exports are much greater than to ethanol in 1980; by 2004 the
fraction to ethanol is greater than to food and industrial — by 2006 it is greater than to feed and
nearly equal to exports.
These plots are evidence of a crowding effect, or competition among the remaining constituents
of corn uses. These effects, while perhaps monotone at each pair ( food and industrial vs. feed,
exports vs. feed, exports vs. food and industrial) are non-constant. The rates of decrease —
the slopes, say — of the pairwise log-ratios, from 1980-2007, are 0.89, 1.08 and 1.21, in order.
These can be loosely interpreted as the magnitudes of the competition among the pairwise
constituents. The observed distance statistic — illustrated in panel (a) of 4 — suggests overall
competition with respect to ethanol is highly significant.
Making use of this dependency finding, we can express how increased use of corn for ethanol
affected the other uses of corn. Comparing the actual composition to what it would have been
if the fractional distribution had remained constant, one might say that each ton of corn used
to produce ethanol was associated with the loss of 0.49 tons of feed, loss of 0.54 tons of
exports, and a gain of 0.03 tons of corn for food and industrial uses. These values should
be interpreted with caution; they vary over time’ choosing a different set of dates will result
in different values. Moreover, since corn yield increased substantially over this time period,
an alternative approach would be to determine how much ttotal feed, exports, and food and
industrial use changed: between 1980 and 2009 the amount of corn used for feed increased
by 18 percent, the amount of corn used for food and industrial use increased by 106 percent,
and the amount exported decreased by 14 percent. From this perspective each ton of corn
used to produce ethanol was associated with an increase of 0.31 tons of feed, an increase of
0.15 tons for food and industrial use, and a loss of 0.08 tons of exports. The first approach
takes yield growth as independent of the ethanol program; the second approach associates all
of the yield growth with the ethanol program.
Interpreting competition among the constituents when ethanol is included as a variable effect
is less straightforward. Figure 6, for example, is an illustration of the log-ratio pairs (food and
industrial vs. ethanol, food and industrial vs. feed, and ethanol vs. feed) for the subcomposition
with respect to exports. The panels in Figure 6 suggest an overall trend of associated and
decreasing log-ratios over time: the line connecting each data year, in order, is turbulently
non-monotonic. The rates of increase of the pairwise log-ratios over 1980-2007 are 4.27, 1.71
and 0.17 respectively. The observed distance statistic for this subcomposition — with respect
to exports — is illustrated in panel (d) of 4. The significant distance from independence and
increasing ’slope’ of the pairwise log-ratios suggests that the constituents of corn yield, modulo
exports, are occupying an increasing and greater share of overall corn production.
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Figure 7: Log-ratios of subcomposition with respect to ethanol, feed and residue in red. The
lengths within the bars are the yearly values of vjm ; the by-year log ratio of the constituent
fraction to with respect to ethanol. Positive values indicate amounts greater than ethanol,
negative values indicate smaller values. The graph illustrates the effect of ethanol production
on the remaining constituents of corn use: the increase in ethanol production appears to be
largely compensated for by the decrease in export and food and industrial use until year 2000.
After 2000, ethanol production crowds out feed stocks as well; from 2005 ethanol production
is greater than that for food and industrial corn.

5 Discussion

The Dirichlet distribution is easy to simulate from directly or indirectly (see (Gelman, 2004)). We
fit the Dirichlet to the margins of the composition and generate replicates from this fit; we prefer
to simulate once and generate the m log-ratios from the replicates. This is a motion towards
investigating complete subcompositional dependence: these log-ratios can be generated for
all subsets.
The alternative is to simulate from the Dirichlet margins 2m times for all subcompositions,
or fit the Liouville directly. Either method requires more complex computations: numeric or
probabilistic integration to estimate parameters. Exploiting simulations here — i.e. randomly
generating the distributions for the statistics of distance from independence for each of the
subcompositions — accounts for sampling error in the data (estimation of the parameters for
the marginal Dirichlets) and expands the class from which the replicates are drawn (beyond



the joint Dirichlet).
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Figure 8: Log-ratios of subcomposition with respect to exports, food and industrial uses in red.
The lengths within the bars are the yearly values of vjm ; the by-year log ratio of the constituent
fraction to with respect to exports. Positive values indicate amounts greater than exports,
negative values indicate smaller values. The graph illustrates the effect of corn exports on the
remaining constituents of corn use: the increase in ethanol production is apparent. In 2005
and 2006, ethanol production is greater than corn exports.

We calculate the distance from independence via a norm on the probability integral transformed
data, via the copula. The resultant distance is invariant to increasing transformations, like the
log-ratio, equivalent on either the marginally Dirichlet replicates or their transformed copies,
and semi-parametric. This method is preferable to tests of independence via null-correlation
(à la Aitchison, see(Aitchison, 1981b)) for multivariate data in high dimensions: dependency in
this setup is not restricted to an elliptical shape.
The method can be used to assess the affect of past biofuel production on other uses of the
crop. It does not predict future effects of biofuel production; the relationships among crop uses
can change over time. As figure 2 shows, during 1980 to 2000, use of corn for ethanol and
for food and industrial uses grew while use of corn for feed remained largely constant and
exports declined. But from 2000 to 2009, use of corn for ethanol increased, exports remained
basically steady, food and industrial use declined somewhat and use of corn for feed declined.
So comparisons to models of the effect of future growth in ethanol production on world corn
markets would require additional interpretation and development.



This method provides a basis for determining dependence of changes in one crop use or land
use on changes in another. Here, for example, we showed that the allocation of corn to food
and industrial use may not have been significantly affected by the growth of bioethanol produc-
tion. Future applications of this method could address the effects of corn-derived ethanol from
a land use perspective, could include additional related crops such as soy, and could address
the extent to which land use changes in Brazil have been influenced by the development of
cane-derived ethanol production.
The dependency statistics here treat time as unordered; as well, the illustrations of pairwise
competition via the log-ratio scatterplots do not model time-dependent variability beyond in-
spection. The labels in figures 3, 5, and 6 suggest temporally sensitive dependency patterns.
This is a point of departure for future investigation. Characterizing competition among bioen-
ergy and other agricultural activities and land uses will be important as bioenergy production
approaches naturally constrained production ceilings.
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