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Abstract

We propose a parametric version of Independent Component Analysis (ICA) via Copulas -
families of multivariate distributions that join univariate margins to multivariate distributions.
Our procedure exploits the role for copula models in information theory and in measures of
association, specifically: the use of copulae densities as parametric mutual information, and as
measures of association on the rank statistics.

The copula approach offers a unified view of component analysis procedures, in particular,
by parameterizing multivariate dependence. ICA then, via the copula, is a generalization of
Principal Component Analysis (PCA) - where the copula model may be non-Gaussian.

Generally, the goal is to orthogonalize a measure of multivariate dispersion, yielding an
orthogonal basis for a multivariate data set. The flexibility of the copula approach allows for
parameterizations of non-gaussian, non-monotone dependence. Additionally, we note a possible
use for the copula approach in generalized component extraction procedures (such as Canonical
Correlation Analysis) and ultimately the broader class of Generalized Linear Models.

1 Introduction

Shrinkage methods - statistical dimension reductions - are important and popular alternatives
to numerical models in a variety of settings: generalized (see Heckman, J. [1976]); and in
particular applied settings such psychometrics and climatology (see Hotelling [1933], Clarke, R.
T. [2001,2002,2003]);. The objective in these methods is to identify a lesser subset of coordinates,
in a high dimensional space, that sufficiently describe the evolution of specific state variables.
The theme is to supplant or replace numerical models, which can be computationally intractable,
with statistical alternatives. Subsequently, the reduction of multivariate data into a vector (or
scalar) of low dimension can be a precursor of an unavailable physical model by illuminating
salient characteristics.

1.1 PCA and ICA...

Given multivariate data xk, the goal in Principal Component Analysis (PCA) is to find the
linear transformation (i.e. rotation matrix), y = Bx that minimizes the off-diagonal variance of
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Figure 1 Diagram of Independent Component Analysis (ICA)/Blind Signal Separation (BSS)
mixing and separating matrices. Typically, independent signals s are observed via unknown
full rank rotation A as x. The ICA/BSS procedure yields y = ŝ outputs as estimates of the
independent signals. The distribution of the inputs and outputs should be proportional.

y. When Σ = ((Cov(yi, yj)))i,j=1..k is the covariance matrix of xk the very well known result is
to generate the eigenvectors for Σ = etΛe - Λ is a diagonal matrix of eigenvalues - which yields
yi = etx, with Cov(yi, yj) = 0, i 6= j, or the rotation which yields linear independence (see
Johnson and Wichern [1998] for a comprehensive take).

Multivariate analysis via PCA is a venerable member of the statistical canon; PCA results are
often intermediate steps in larger investigations where the component outputs may be inputs in
standard predictor-response models or more generalized ’indices’ of higher order measurements.
Oja [1992], for example.

In Independent Component Analysis (ICA) the minimization of off-diagonal variation in y
is strengthened to statistical independence, beyond the second order condition. Here, the goal
is to find the linear transformation (i.e. rotation matrix) of xk, y = Bx, such that the observed
yi = bix are nonlinearly correlated1 of yj = bjx; here the model for statistical independence
is explicit. The observed data are modeled as mixed outputs x = As, of independent sources
s. The columns of Y are the estimates of these independent components, or signals; which the
rotation B is an estimate of A−1. See Figure 1

Independent Component Analysis (ICA) can be cast as a generalization of the PCA program
where more general versions of statistical independence succeed covariation and thus uncorrelat-
edness (Jutten and Herault [1991]). In both versions the objective is the recovery of the linear
rotation A of the independent signals x. The difference is the characterization of statistical
independence or contrast function, and the implicit or explicit distributional assumptions on
the inputs (See Cardoso [1998], Brunel et al. [2005]).

ICA extends independence beyond covariance. While zeroed covariation is sufficient for
independence under the Gaussian assumption typically operant in PCA. When dependency is not
appropriately captured by the second moment, covariance is an insufficient proxy for statistical

1In the maximal correlation sense: ρ(yi, yj) = supf,g(f(yi), g(yj)) = 0 [see Hyvarinen 2001].
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independence. For a simple example, take functional dependency xi = h(xj) = xj
2, for example,

E(xi) = 0. Here Cov(xi, xj) = 0 though xi, xj are completely statistically dependent. ICA
can be seen as PCA under a more general contrast function, based on an alternate measure
. In PCA we seek the linear rotation that minimizes covariance; in ICA we seek the rotation
that minimizes, for example: entropy, mutual independence, higher order decorrelation, etc.
(Cardoso [1998]).

In the simplest ICA models - including Blind Signal Separation (BSS) - the number of signals
is equal to the number of sources: the rotation matrix is of full rank.

1.2 ...the Copula approach.

The copula families of multivariate distributions, those where a candidate joint distribution
is evaluated on a set of univariate marginals, are functions from Ik to I. As densities – full
derivatives – copulas are the ratio of the joint density to the product of the univariate marginals
(Nelsen [1999], Frees and Valdez [1998]). In this sense the copula representation captures the
dependence within x: the value of the copula is the proportion of dependence to full indepen-
dence. This proportion is maximal when there is no gain to modelling a multivariate x; each
element xi, separately, is sufficient. This property, in particular, recommends the copulae family
as a fertile point of departure for dependence models.

We propose parametric copulae families as estimators for the dependency in x under broad
dependence conditions. Specifically, we investigate the copula approach as a generalized ’engine’
for the contrast functions - measures of statistical dependence - which characterize ICA analysis.
We suggest a Copula based version of Independent Component Analysis (CICA) - where we
model and rotate dependency information in x via copulae families.

Our version - CICA - replaces non-parametric, higher order proxies for independence with
parametric examples from the copula literature. This parametric modelling appeals: 1) to
the duality between information minimization within the component outputs and likelihood
maximization for the rotated source model and 2) to the partitioning of the full likelihood of
the outputs into model fit and dependence minimization.

We investigate ICA via copula based measures of association on partite reductions of x - in
direct analogy to the PCA via covariance matrix we can view the ICA procedures as orthogonal-
izations of higher order tensors to capture non-elliptical dependence. The flexibility of partite
reduction allows us to suggest appropriate copula families for non-gaussian dependence patholo-
gies - specifically extreme value, non-monotone and inhomogenous data - within a multivariate
set. Lastly, we illustrate a consistent framework for fully parameterized ICA (in a bayesian
setting) perhaps.

2 Setup

2.1 Measures of dependence

Heuristically, a measure of dependence captures the strength of the joint distribution on the in-
dex (of an index set) of a multivariate vector (See Renyi [1959] for a full treatment). Well known
versions of measures of dependence - measures of association - include: Pearson’s correlation
coefficient ρ, the maximal correlation, Kendall’s tau ρτ , Spearman’s rho ρS (see Mari, Kotz
[2001]), and Linfoot’s informational correlation (see Linfoot [1957] or Joe [1987]). We include
mutual information (see Kullback [1959]) with these measures.

Typically these are scalar measures defined on a pair of random variables. Any multivariate
generalization is often, though not necessarily, a function from Rk to R (usually [0, 1] or [−1, 1])
where weights are apportioned across the index set of the multivariate vector. See Wolff [1980],
Simon [1977], Joe [1990] and section A.1 in the appendix.
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In the special case that X ∼ Ellk(µ,Σ) - setting µ = 0 without loss of generality - Σ is a
scatter matrix which is sufficient for the dependency in X. In these elliptical distributions the
dependence in the conditional distributions FXi,Xj |X−i,−j is independent of the value of X−i,−j :
second order parameters fully characterize dependency across indices of the multivariate vector;
second order moments, Σ = ((σij)), are typically sufficient.

This condition, sufficient for Gaussian or t-distributed x for example, is a special case of
r-independence, here r = 2, (see Ibragimov [2005], Joe [1997]). See section A.2 in the appendix.

If Θ = Σ̂ is an estimator for Σ under 2-independence; Θ = ((θij)) completely specifies the
scatter matrix. In the Gaussian example each θij is the sample covariance, or a version of it.
It is enough to parameterize Θ pairwise for ellipsoidal distributions; more generally Θ may be
indexed over any subset X. In this way Θ can be seen to collect dependencies in index sets of
a multivariate vector. When the index set is only pairwise, the dependency is elliptical and θij
is an axis of the multivariate ellipsoid.

One approach is to parameterize and estimate partite models, using measures of dependence
where the parameter θ is estimable on indices of the multivariate vector. We note that symmetry
for a bivariate measure of dependence - exchangeability in the multivariate extension - is a Rényi
postulate that a dependency model may not necessarily satisfy. We expand on this idea in the
context of full and partite models below.

2.2 Copulas

One measure of dependency, or ‘engine’ for measure of dependency, is the copula functionaliza-
tion (Nelsen 1999, 2006), defined via its density, on a multivariate x = (x1, ..., xk) as

dC(x) =
dFx(x)∏
dFxi(xi)

(1)

is the multivariate copula density for x
here dC(x); is the full derivative of a distribution function which takes the marginal distri-

butions Fx1 , ..., Fxk as its arguments.2 The copula distribution, then, is a distribution function
on the space of the marginals to the unit hypercube, (FX1 , ...FXk) 7→ Ik.

Many measures of association are copula dependent in that they can be expressed via the
copula. (See Nelsen [1999, 2006], Wolff [1980], Schweizer [1981]). Kendall’s tau and Spearman’s
rho are copula based, for example, as versions of an expected value of the copula or copula
density (see section A.3 in the appendix). Any measure of association that can be expressed on
a multivariate family with fixed margins is expressable via the copula. Pearson’s correlation,
to contrast, is an example that cannot be expressed via the copula (see section A.3 in the
appendix).

2.3 Mutual information via Copula

Recall that the mutual information (see Kullback [1968]), for a multivariate X with distribution
function F (X)is

MI(x) ≡
∫

Ω

dF (x)log(
dFX∏
dFXi

) (2)

where Ω is the probability space for X. Using (1) above, this can be re-expressed as

MI(x) ≡
∫

Ik
dC(u)log(dC(u)) (3)

2We prefer this notation in lieu of the subscript for the full derivative. We will use C for the copula distribution
function.
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(see Davy and Doucet [2003]). If T ∼ F, dF = f then −H(T ) = E(f(T )log(T )) is called the
entropy for t (see Ash [1965]) and we write

MI(X) = −H(u) =
∫

Ik
dC(u)log(dC(u)) (4)

The mutual information then - as the expected value of the log of the copula density, can be
computed, or estimated, from a parametric copula

Our approach is to: (1) use the mutual information as the measure of dependence; (2) access
or estimate the mutual information via a parametric copula model. Taking the elliptical case -
X ∼ Ellk(.,Σ) - case for illustration, suppose

CΘ = ((Cθij )) (5)

is a consistent model for the multivariate dependence in elliptically distributed X. Then,
each Cθij is an estimator for

dFxi,xj
dFxidFxj

. Here, a matrix of bivariate copulae are estimators of
functional dependency. This is a natural approach given the role of the copula. Then the
measures of association for each pair i, j are functions of each Cθij and the scatter matrix Σ -
in this case approximated via a so-called mutual information matrix MI(xi, xj)

MIΘ(Xi, Xj) = ((H[Cθij ]) = ((MIθij)) (6)

can be characterized via these bivariate copulae.
In the PCA/ICA literature, contrast functions are objective functions for source separation:

let ψ(y) = 0 imply yi and yj are independent ∀i 6= j where ψ is a particular contrast function.
The minimization of this function is the PCA/ICA algorithm.

Our approach is to employ the copula, exploiting its natural role within measures of associ-
ation and as a model for dependence/independence, as the engine for ICA contrast functions.

3 Copula Based Independent Component Analysis

There are two common approaches to ICA: direct minimization of a ’redundancy’ measure on
the outputs or information maximization between the outputs and hypothesized inputs (see
Obradovic and Deco [1998]). Lee. et al. as well as Cardoso (Lee, T [2000], Cardoso [1998])
illustrate the similarity between these methods. Both of these approaches are tantamount to
minimization of the mutual information in the rotated vector x, within a full model which
includes the input distribution from dependence to independence. We cast our version, which
we see as a unification, in context of the copula.

We restrict our take to the simplest ICA mode: blind source separation, where the assumption
is that

x = As (7)

is observed as a linear rotation B (square and full rank), of s independent signals. The goal
is to find

y = Bx (8)

where y = ŝ is an estimate of the source signals. The statistical model here has two compo-
nents: the recovery of A and the estimation of the distribution of s. As A is assumed full rank
and thus invertible, the source separation problem is recast as a search for B = ˆA−1. Typically,
we are interested in the joint distribution of the source
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q(s) =
k∏
i=1

qi(si) (9)

represented as independent under the model. The goal of ICA then is to minimize a contrast
function that recovers the independence expressed in (9). Recasting the contrast functions in
context of the copula, we can view ICA as a copula based procedure.

3.0.1 via Maximum Likelihood

The Kullback-Liebler divergence between two probability density functions f(t) and g(t) we
notate

K(f, g) =
∫
t

f(t)log(
f(t)
g(t)

) (10)

We can use the notation K(w, z) for the divergence between the distribution of two random
vectors w and z. K ≥ 0 with equality if and only if w and z have the same distribution; K is
not symmetric.

Using the model in (7), with q the true distribution for s - for a given model (B, q = q0) for
the mixing matrix and distribution of the signals, the density of the observed data x is

q̂(x;B, q0) = |detA|−1q0(A−1x) (11)

under the parametric model q̂ with parameters (A, q0), since s = A−1x.
For N independent samples of x, x = (x1, ...,xN ), the log-likelihood is

log(q̂(x, A, q0)) =
N∑
i=1

log(q0(A−1xi)))− log(|detA|). (12)

Put

L(q̂) = L(B, q0) = N−1
N∑
i=1

log(q0(A−1xi))− log(det|A|) (13)

this converges to its expectation as N →∞,

L(q̂) =
∫
q(x)log(q̂(x, A, q0))dx (14)

again with q the (true) distribution of the observed data.
Rewrite (14) as

L(q̂) = −
∫
q(x)log(q(x))−

∫
q(x)log(

q(x)
q̂(x, A, q0)

). (15)

The right hand side is just H(x) − K(q(x), q̂(x)). Since H(x) is independent of A, maxi-
mization of the log likelihood is equivalent to minimizing the divergence between the observed
density and our parametric model.

Rewrite the log-likelihood of the model for x,

L(A, q0) = H(x)−K(q(x), q̂(x, A, q0)) (16)

maximizing the likelihood of B = ˆA−1 is equivalent using
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∂L

∂B
= − ∂

∂B
K(q(x), q̂(x, A, q0)) (17)

Again, since A is invertible, the KL divergence is invariant and minimization of (17) is
equivalent to (21).

Following maximum likelihood is equivalent to finding the matrix B such that y = Bx is as
close as possible to the sources, in K ’distance’.

3.0.2 via Infomax

Bell and Sejnowski [1995] show that maximizing information transfer over a nonlinear transform
G(y) and rotation matrix A is equivalent to maximizing the joint entropy of the non-linear
outputs. Take

Gi(s) =
∫ s

−∞
qi(t)dt (18)

as a distribution function for the source si. Gi(si) is a non-linear transform.
As well, note

I(x) =
∫
X

p(x)log(
p(x)∏k

i=1 pi(xi)
)dx (19)

as the multivariate mutual information for a multivariate x.
The joint entropy of the outputs via their - nonlinear - transforms G is

H(G(y)) =
k∑
i=1

H(G(yi))− I(G(y)) (20)

The joint entropy is maximized when I(G(y)) = 0 and G(yi) is uniform. Recovery of A is
via the minimization of (20)

∂H(G(y))
∂A

=
∂

∂A
(−K(G∗(y), G(y))) (21)

where K(., .) is the Kullback-Liebler divergence from above and G∗ is the multivariate -
maximal entropy - uniform distribution. For invertible, ’well-picked’, transforms G(y), (21) is
equivalent to the divergence between the estimate p̂ and the observed distribution p in (17),
above.

3.0.3 K-L distance: Marginal fit + Independence

We treat the distribution of the sources, q = q0, as fixed in the above approaches, though the
full parameter space is (B, q0). In (17) and (21) the maximization is with respect to B.

Optimization over B alone is problematic if q0 is far from the true distribution; in these
cases we should minimize the divergence K(p, p̂(B, q)) over q as well.

Following the outline in Cardoso [1998], denote y∗ a random, mutually independent vector
with margins distributed equivalently with y. It is well known (See Kullback [1959]) that

K(y, s) = K(y,y∗) + K(y∗, s) (22)

for s independent. The K-L distance between the outputs and the sources can be parti-
tioned as: (1) the K-L distance between a distribution and the closest independent distribution,
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K(y,y∗), and (2) the K-L distance between the true and hypothesized distributions for the
sources.

The full program is achieved by taking s = y∗, which minimizes the marginal mismatch, thus
the right most term in (22). The program is completed by minimizing the mutual information
in the chosen distribution, the middle term in (22). The first is minimization with respect to
the choice of q0; the second is minimization for the mixing matrix B.

A common preliminary to many ICA programs is the removal of Gaussianity by pre-‘whitening’
the observed data, often via PCA. See the Appendix.

3.1 ...via the copula model

To recap: given a full model (q̂;B = Â−1, q0) - p̂ the distribution of the data x, A the estimate
of the inverse of the mixing matrix, q0 the hypothesized distribution of the sources...

1. Match distributions between input (s) and output (y): ’Move’ everything - (p̂;A = B̂−1, q0)
- until the distributions between the ICA output and the hypothesized inputs match.
Simply, this is a search for the model with minimum Kullback divergence between inputs
and outputs. This is the maximum likelihood approach: maximizing the likelihood of the
outputs is equivalent to minimizing the negative entropy of the outputs. When q0 is well
fixed this is equivalent to minimizing the mutual information in the outputs...

2. ...Match structure within output: ’Move’ just (p̂;A = B̂−1) - until the mutual information
within the outputs is minimized. This is the argument in section 2.4.3. This, the mu-
tual information approach, exploits the equivalence of statistical independence and zeroed
mutual information. The below can be seen as an approximation...

3. ...Orthogonalize a dependency (i.e. ’redundancy’) measure and fit marginal distributions
separately: This procedure is applied by explicitly using PCA to whiten the data, and
then an r− variate ’redundancy’ measure to rotate the whitened data. Oja [1997] calls
this the the non linear PCA approach - which relies on the partitioning of model fit and
independence outlined in the argument in section 3.0.3. This version has been shown (see
Lee et al. [2000]) to be an approximate of the generalized information theoretic procedure.

In practice q = q0, the distributions of the sources is fixed and/or treated as a nuisance
parameter. The ICA program is then just a search for A - the best estimate of the mixing
matrix.

The standard approach is to estimate the above objectives using higher order, non-parametric
statistics, often cumulants (see Comon [1994]). We discuss this in section 3.2.

The multivariate copula density is the ratio of the full density to the full density under
independence - the product of the marginal densities. The development here is to replace the
non parametric estimating equations with parametric versions, via the copula - exploiting the
natural role of the copula in mutual information.

The program, in the order of the above enumeration, is to estimate the mutual information
of the outputs using a copula model for: (1) where the marginal distributions q and mixing
matrix A are parameterized; (2) where the marginal distributions are fixed and only the mixing
matrix A is parameterized; (3) where the marginal distributions are accessed only via a mutual
information (or other measure of association) array - A is parameterized.

3.1.1 MLE via copula, Infomax via copula

We can view the MLE, and thus infomax, arguments as an extension of (24). Here we access
the maximum likelihood principle via the parametric copula estimate of the mutual information.
The likelihood in (17) and (21) is, in terms of the copula,
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∂L

∂B
=

∂

∂B
N−1

N∑
i=1

Cθ(ui) (23)

where u are fixed as ui = G(yi), the univariate distributions of y. Then the last term in
(20) is

I(u) = I(G(y)) = I(G(Ax)) = E(log(dC(G1, ..., Gk))) = E(log(dC(u))) (24)

Again, the first term in the derivative of (20) is invariant to G.3 So, (21) is equivalent to
finding B such that I(G(Bx)) =

∑k
i=1 H(G(yi)), that is

EB(log(dC(G1, ...Gk))) = E(log(dC(u))) =
k∑
i

EB(log(Gi)) = EB(log(ui)) (25)

or the rotation that yields the independence copula for a parametric copula family CΘ.

3.1.2 Mutual information via copula

To cast the partitioning in (22) in terms of the copula we write the middle term as

min
B

I(y;B) = min
B

EB(log(dCΘ(u))) (26)

and the final term in (22)

min
Θ

[CΘ(u)−
k∏
i=1

(ui)]. (27)

That is we minimize the mutual information via the copula via rotation A after minimizing
the distance between parametric copula and independent marginals.

3.1.3 K-L distance - via Copula: Independence + Marginal fit

Set u∗ = G(y∗) where y∗ is still a random, mutually independent vector with margins distributed
equivalently with y. Thus, u∗ is independent with margins distributed as y. In analogy with
section 3.0.3

K(û,u) = K(û,u∗) + K(u∗, û) (28)

with û the estimate of the true sources output from a copula based procedure and u the true
distribution of the sources. The K-L distance between the outputs and the sources is then: (1)
the fit of the outputs to independence K(û,u∗); and (2) the fit of the marginals of the outputs
to the true source distributions.

The full program is achieved by taking u = u∗, which minimizes the marginal mismatch, thus
the right most term in (28). The program is completed by minimizing the mutual information
in the chosen distribution, the middle term in (28). The first is minimization with respect to
hypothesized source distribution; the second is minimization for the mixing matrix.

3G is treated as a nuisance parameter here. In general a poorly ’picked’ G will invalidate infomax.
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3.2 Discussion of approach

The copula perspective allows parameterization of dependence, in particular mutual information,
via the copula model. The copula entropy H(u) is the mutual information of the outputs -
transformed by their univariate cdf’s, ui = F (yi). The maximization of this entropy is equivalent
to the minimization of the mutual information between the inputs. Further, the entropy is
maximal when the first term of (20) - or the fit of the marginals to the true source distribution -
is large and the second - or the mutual information across the margins - is small. These results
are fertile point of departure for a fully parameterized component model.

In such a general model: the source distributions ui =
∫ si

0
q̂(t)dt - are the arguments of the

copula CΘ = (u); the rotation matrix B = Â−1 is a function of Θ. A full likelihood, then, would
cover the space of source distributions, copula parameters, and subsequently all linear rotations
- including those on the possibly non-linear pre-image space for the source distributions.

There are drawbacks to this approach:

• A model which includes the source distributions as parameters may be over-parameterized,
especially if the rotation matrix is not of full rank.

• There are no natural multivariate families - i.e. families with nice properties that accept
ranges of dependence. Unusual and undesirable dependencies in subsets - conditional
distributions - of the marginals (see Joe [1987, 2001]). Parametrically heterogenous models
may be excluded.

• The parameter space can possibly increase exponentially with k - on the same order as the
power set.

Versions of this approach where the joint dependence is captured in a single parameter (mul-
tivariate or scalar) may not be applicable for the ICA problem. Consider the minimization in
(26) and (27): if Θ⊥ is the copula parameter at independence then limΘ→Θ⊥ CΘ(u) =

∏k
i ui and

the rotation matrix at Θ⊥ is unidentifiable. A possible application is in Multivariate Coordi-
nate Analysis (MCA) [Oja 1997] or Canonical Correlation Analysis (CCA) [Hardoon, Szedmak,
Shawe-Taylor 2004] where the outputs need not be independent.4 We note as an aside that a
fully Bayesian approach would be natural for a fully parameterized - source and mixing matrix
- model.

Lastly, we note, as important aside: 1) that common algorithms for ICA employ a version of
PCA whitening as a pre-processing step [although implicitly; Hyvarinen 1999]; 2) higher order
cross moments are necessarily computed at low dimension [Cardoso and Comon 1996; Cardoso
and Souloumiac 1993]; 3) a disadvantage of reliance upon statistical moments is highlighted in
an example by Mccullagh [1994] [see also Lindsay 2000] where distributions perturbed (via sine
wave) are indistinguishable in moments.

4 Simulated Applications

In the examples (figures) below we apply the CICA procedure to various settings in a demon-
stration of the flexibility of the method, and comparison to extant ICA algorithms. In the
classical ICA program mixing matrix A is full rank: in the simulations below we investigate the
performance of CICA in full and deficient rank examples.

1. Full rank (k = 3) Gumbel-Hougard type copula to rotated Generalized Extreme Value
(GEV) type distribution (see Stephenson [2003], Appendix). This example illustrates the

4A full copula model would determine the gradient descent procedure yielding - possibly - interesting components
everywhere but independence.
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utility of the CICA procedure in what we believe will be the most common CICA setting:
extreme value/non-gaussian data sets.

2. Full rank (k = 3) two-parameter (BB6) copula on independent sources — S1 ∼ U(−1, 1)2, S2 ∼
Gumbel(0, 1), S3 ∼ χ2 — with known mixing. This example is a test of the ability of the
CICA procedure to recover exactly the independent sources.

3. Full rank (k = 2) FGM type copula on known, mixed Gaussian and Laplacian sources
— standard demonstration examples for fastICA procedure. This example compares the
CICA procedure with a common ICA (fastICA) algorithm.

4. Two-parameter archimedean (BB6) copula5 on on deficient rank (m = 4, k = 5) mixed
independent sources — S1 ∼ U(−1, 1)2, S2 ∼ Gumbel(0, 1), S3 ∼ χ2 — with known
mixing; two non-independent sources are included S4 ∼ Z+N1, S5 ∼ Z+N2. Z ∼ Exp(1)
and N1 ∼ N(0, .5), ⊥ N2 ∼ N(0, 1).

In Abayomi [2008b] we apply a partite version of the CICA procedure on the Environmental
Sustainability Index (ESI) — a high dimension data set — for a fifth example. In this version
of the CICA procedure, we approximate a full model by using bivariate copula to estimate a
scatter-mutual information matrix: Σ̂ = ((MIXi,Xj )). In outline:

Set y = RWx, with W a ‘whitening’ matrix - the product of a PCA - and R the CICA
rotation. This allows diagonalization of the final mutual information matrix via well known
procedures like Singular Value Decomposition (SVD) - see Appendix.

• Treating the univariate distributions ui = FXi(xi) as observed.

• Bivariate Mutual Information(s), or, E(log(dC(ui, vi))) are the elements of our scatter
matrix

• Construct scatter/kernel matrix

• Choose copula families at each bivariate pair: C(u) = ηθ1,θ2(η−1
θ1,θ2

(u) + η−1
θ1,θ2

(v)). ΓCΘ =
((Cθij (Fwixi(wixi), Fwjxj (wjxj))))i,j=1..k

• Find orthogonalization of ΓCΘ ; via SVD λ1, ..., λk are the eigenvalues and e1, ..., ek are the
eigenvectors.

• Yield yk = bkxk = rkwkxk with yi ⊥ yj via CΘ

For i = j, the mutual information is just the entropy: we compute the entropy using the
empirical distribution, the copula fitting is unnecessary.

4.1 CICA on Multivariate Extreme Value (GEV) distribution

We believe the most likely application for the CICA procedure will be on multivariate non-
gaussian/extreme value data. We simulated non-independent multivariate Generalized Extreme
Value (GEV) data using the algorithms outlined in Stephenson [2003] for logistic type multi-
variate extreme value distributions.

G(x1, x2, x3) = exp{−(x1
1
α + x2

1
α + x3

1
α )α}

where α ∈ [0, 1] is a dependency parameter and xi = [1 + ξi(ti−µi)
σi

]−ξi — with (µi, σi, ξi) the
location, scale, and shape parameters of the ith univariate GEV distribution.

We used a trivariate Gumbel-Hougard type copula6 as the ‘dependency gradient’; the pa-
rameter B = Â−1 was estimated using R’s non-linear constrained optimizer [Lange 2001]. This

5See Abayomi [2008], Appendix.
6From a ‘frequentist’ perspective, the a priori choice of the copula function, i.e. ‘dependency gradient’, to opti-

mize/use as score function is arbitrary.
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Figure 2 Scatterplot matrix of simulated extreme value distribution, k = 3, n = 100 [Stephen-
son 2002]. The joint distribution is minimally dependent and the marginals are characteristically
non-Gaussian.

is, directly, the optimization of the score/estimating equations for B = Â−1, represented in the
analogous equations (17), (21), (24) (and the first term on the RHS of (28)) on the empirical
cdf’s of the univariate margins. See Figures 2, 3, 4.

The outputs of the CICA procedure are approximately independent: the parameter value
for the trivariate GH copula is near independence for each family.

For a last ’test’ of independence, Gaussian, and t type copulas fit to the outputs of the CICA
procedure are yielded parameter estimates at independence, as well.

Figure 3 Scatterplot matrix of full rank ‘rotation’ of simulated multivariate extreme values,
k = 3, n = 100.

12



Figure 4 Scatterplot matrix of CICA outputs or ‘source estimates’, k = 3, n = 100: yi = Bixi;
using Gumbel-Hougard type copula as ‘dependency gradient’. The bivariate scatter plots appear
to have independent distributions within each plot; additionally, Gaussian, t, and Gumbel-
Hougard [Nelsen 1999] copula fit to outputs have parameter estimates at or near independence.

Figure 5 CICA model applied via Gumbel-Hougard type ‘dependency gradient’. The first
row are the source distributions, all non-normally distributed: S1 ∼ (U(−1, 1))2, S2 ∼
Gumbel(0, 1), S3χ

2. The second row are the ‘data’ observed after a full rank rotation. The
third row are the outputs - estimated sources. The data are plotted in dark gray; estimated
density is superimposed in blue.

4.2 CICA on known, mixed independent sources

For a second example we applied the CICA procedure to independent data from known source
distributions after pre-multiplication by a full-rank mixing matrix. See Figure (5). CICA
recovered the independent sources: density and scatter plots of the outputs match the known
sources.

13



Figure 6 fastICA [Hyvarinen 1999] and CICA model applied to mixed Gaussian and Laplacian
sources - S1 and S2 in the first row of the graph, n = 10000. The first row are the source
distributions. The second row are the fastICA estimates. The third row are the CICA estimates.
The data are plotted in dark gray; estimated density is superimposed in blue. Both algorithms
appear to recover the sources - though the order of the outputs is swapped. In general, ICA
recovery is permutation invariant.

4.3 fastICA vs. CICA, sample size comparison

Here, we applied the FGM version of CICA on an example used in the well known fast-ICA
[Hyvarinen 1999] procedure — a common ICA algorithm.7 See figure 6.

The performance of the two algorithms is similar — with respect to the closeness of the
estimates to the true source distributions — when the entire data (10, 000 observations) are
used. As we noted above, we expect the (semi) parametric CICA procedure to outperform
non-parametric fast-ICA type procedures on smaller sample sizes (Mccullagh [1994] [see also
Lindsay 2000], mentioned above). Figure (7) plots the mean L2 distance between the true and
estimated and densities: n−1

∑N
n=1(q(yn) − q̂n(yn))2, for increasing values of n. The CICA

algorithm appears to perform slightly better on this metric at lesser sample sizes.
Since the CICA procedure minimizes

K(û, u∗) = −H(u)

via equation (24) write K(û, u∗) = Kθ; since H is complete for choice of θ [Kullback 1968].
Then the mean integrated squared error

Eu[Eθ(Kθ̂ −Kθ)2] ∼ Eθ(θ̂ − θ)2 = O(
1
n

)

of the copula based estimator is superior to

7An alternative procedure - Mutual Information Least Independent Component Analysis MILCA [Stogbauer, et
al. 2004] - employs bivariate estimation of mutual information, similar to the partite version of CICA applied in
Abayomi [2008b]; mutual information in MILCA is estimated semi-parametrically (via binning).
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Figure 7 Log Mean Integrated Squared Error (MISE) of fastICA [Hyvarinen 1999] and CICA
model applied to mixed Gaussian and Laplacian sources (via Gumbel-Hougard copula) - S1
and S2 in Figure (6). The MISE is n−1

∑N
n=1(q(yn)− q̂n(yn))2 as N ranges from 10 to 10000.

MISE for CICA is in blue, fastICA is in red. The y−axis is plotted on log scale to highlight the
difference: the distance between the two curves is on the order O(n−1/5). The CICA procedure
has a marginally better error rate, and less variability over (100) random draws at each sample
size. The mean MISE curves are plotted in darker color.

Ex[Eq(q̂(x)− q(x))2] = O(
1

n4/5
)

the kernel (averaging) based estimator used typically; q̂ is the kernel estimator of the source
distribution. In the CICA approach, conditioning on the univariate marginals allows us to
consider the KL distance K parametrically.

In general, parametric models have a faster (in sample size) convergence rate than non-
parametric models8 [van der Vaart 1998]. The CICA procedure is semi-parametric, since the
marginal parameters are true nuisance parameters. The mutual information (via the copula) is
invariant to univariate changes in location, scale — we expect the CICA algorithm to have close
to a parametric convergence rate.

Figure (7) is comparison of L2 error rate for the CICA and fastICA algorithm on the mixed
Gaussian and Laplacian source example in Figure (6) for random draws of samples of size ranging
from 10 to 10000. On average, the CICA algorithm seems to outperform the ICA algorithm
though the variation in MISE is slightly higher for CICA.

4.4 CICA on deficient rank, known, mixed independent sources

In this last example we compare the CICA procedure with fastICA on deficient rank (m = 4)
mixing (k = 5) of known independent sources. The independent sources are as in section 3.4.2:
S1 ∼ U(−1, 1)2, S2 ∼ Gumbel(0, 1), S3 ∼ χ2. Two non-independent sources are included

8O(n1/2) vs. O(n−4/5) for the mean L2 distance
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Figure 8 CICA model applied to deficient rank, m = 4, sources. S1 ∼ U(−1, 1)2, S2 ∼
Gumbel(0, 1), S3 ∼ χ2. Two non-independent sources are included S4 ∼ Z +N1, S5 ∼ Z +N2.
Z ∼ Exp(1) and N1 ∼ N(0, .5), ⊥ N2 ∼ N(0, 1) are independent Gaussian noise, n = 1000.
The first row are the source distributions. The second row are the mixed inputs. The third row
are the CICA estimates, the outputs. The data are plotted in dark gray; estimated density is
superimposed in blue. The presence of non-independent sources S4 and S5 appears to affect the
estimation of the independent S1, S2, and S3. Notice especially the perturbation in the density
curve of Y3 versus its source S1. In general, ICA recovery is permutation invariant.

S4 ∼ Z +N1, S5 ∼ Z +N2. Z ∼ Exp(1) and N1 ∼ N(0, .5), ⊥ N2 ∼ N(0, 1) are independent
Gaussian noise. See Figure (8)

Violations of source independence appear to have a measurable effect on the CICA outputs;
still the source distributions are recognizable. In other settings, the presence and divination of
deficient rank sources is called model selection under sparsity and is an area of active research.

5 Discussion

On higher dimension data, in particular the example in Abayomi [2008b], we propose the partite
model outlined in section 3.3.1 and the final paragraph of section 3.4. The mutual information, or
other copula based measure of dependence, array in this modelling need not be a matrix. Higher
orders of dependency may be determined via partial measures of dependence and represented in
an array of higher dimension. Orthogonalization procedures for tensors may be applicable (see
Leibovici and Sabatier [1998]) in a natural extension of the matrix singular value decomposition.
The scatter matrix (tensor of order 2) can be extended to a scatter array (tensor of order greater
than 2) to include 3-dependence (or higher) [see Ibragimov 2005 again].

For an extension to a full model, in analogy with this partite procedure, a version of this is
to express the copula as a convex sum or convex integral where the mixing parameter is summed
- integrated over. For example
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CΘ=(θ1,...,θk)(u) =
∫

Θ

uθ11 · · ·u
θk
k dΘ (29)

and

CΘ=(θ1,...,θk)(u) = θ1

k∑
i=1

u− θ2

∑
i,j

C1(ui, uj)− · · · (−1)kθk−1Ck(u1, ..., uk) (30)

with
∑
i θi = 1 [Wolff 1986] are simple versions - in general C(u) =∫

Θ
C∗(uθ1 , ..., uθk)dΘ is a copula where Θ is a mixing parameter and C∗ is some distribution

function (parameter) [see Marshall and Olkin 1988]. See the Appendix.

5.1 Unification of PCA/ICA via the Gaussian copula

CICA, or ICA via the copula, yields a unifying framework in which PCA procedures can be
cast. Take the more general case of 2-dependence/elliptical dependence (see Appendix). In
these cases we can write the density of the copula as

dCΘ(u) = φ(
1
2
uTΣ−1u) = φ(t)

with Θ = Σ the ‘scatter’ tensor of order 2 — i.e. a matrix — for multivariate xk, and
where φ(T ) ∼ o(t2). The Gaussian copula is a member of this family. In the CICA program we
minimize the expected log of the above via equation (26), for any copula expressed ‘dependency
gradient’.

It is direct to note that the PCA program is a special case — the copula density matches the
above, i.e. is Gaussian or elliptical — where the marginal mismatch via equation (22) is ignored.
Alternately, note that PCA vs singular value decomposition (SVD) is a quadratic optimization,
consonant with the expression of the elliptical copula density.

CICA then, via the Gaussian copula, is a generalization of PCA type procedures where Θ is
a more general non-affine manifold or ‘dependency gradient’.

Lastly, note the first term on the RHS of (16): this is the entropy of the inputs, and by
invariance of entropy to invertible transforms, the entropy of the inputs, determined solely by
the source distributions. Entropy is maximal for Gaussian sources; the second term on the RHS
of (16) is the estimating equation for the mixing matrix B = Â−1. Under ordinary ICA — any
transform of the margins is arbitrary and identifying the contrast gradient from the entropy is
difficult. In CICA, via equation (22), the second term on the RHS is identifiable from the first
term — allowing for Gaussianity in the sources.

5.2 Extensions: latent models; non-independent components; Bayesian
CICA

PCA and ICA type models are, in practice, used to reduce the dimension of multivariate data
xk to a set (l1, ..., lm) ≈ h(x1, ..., xk) with k << m, and h a linear function. The factor
analysis program yields lm as the first m components of a PCA/ICA type output. In PCA
the components are ordered by the magnitude of the associated eigenvalues; in generalized
ICA (and CICA) the component ordering is unspecified.9 The output lk is a version of latent
modelling: a special case where the mechanism is linear yields the PCA/ICA models; when

9In the partite CICA model, it is possible to order the CICA outputs by associated eigenvalue of the SVD decom-
position. The interpretation is less clear, though, as the ‘independence’ of the outputs is permutation symmetric.
Further work on multi-stage CICA — where the components are extracted singly — is necessary.
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k << m the models are rank-deficient. In Abayomi [2008b] we explore this dimension reduction
on environmental data.

The latent model approach to CICA may be immediately applicable as a version of an
imputation algorithm. Factor analysis via CICA yields latent variables that capture (possibly
non-gaussian) dependence in the multivariate data. A CICA type procedure may be used as an
imputation10 model a priori by using CICA factor output as covariates in a chained equation
regression type imputation algorithm (see Chapter 1). More generally, copula-based estimating
equations can yield imputations (of quantiles) in, for example, an expectation-maximization
framework.

Component analysis under non-independence/dependence is an immediate extension of the
CICA perspective. The estimating equations yielded by (17), (21), and (24) need only be
constrained for varying Θ at values of dependence.

A Bayesian version of CICA arises from proposing a prior on Θ, thus seeding the CICA
procedure with a distribution on the dependency for any model. If a parameterization of Θ
can encompass a broad class of dependency models — similar to the representation of General-
ized Extreme Value (GEV) distributions.11 In absence of such a parameterization, versions of
‘dependency-gradient’ averaging could be implemented via Bayesian Model Averaging (BMA).

Most promising, perhaps, is the possibility of extending the copula based estimation for
the ICA model to a more general copula, or dependency based, estimation for broad classes
of Generalized Linear Models (GLM). ICA is the intuitive first application: the contrast func-
tion/estimating equations are solely copula dependent. The Kullback-Liebler (KL) distance
is just the Mutual Information for these models. More generally, discovery of copula-‘similar’
representations of KL distance will yield estimating equations for the broader class of linear
models; we look to reveal estimating equations which can exploit dependency.

10...or ‘complete data’ model. Any model used for imputation is a complete data model for the missingness
mechanism. See Chapter 1 for comments

11GEV distributions may indexed by values of a parameter γ. This representation encompasses Weibull, Frechet,
and Gumbel type distribution in one model see Gumbel [1958]
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Figure 9 Illustration of extension of CICA to copula based estimation of General Linear
Models (GLM). The CICA procedure is the natural first example of a class of linear models
which can be defined via copula based estimating equations. The Kullback-Liebler distance
has mutual information as a special case: the ICA problem is the characteristic setting and
the copula families, as models for dependence/independence, are the intuitive engines for this
estimation. Generalizing mutual information ‘distance’ (for ICA) to KL ‘distance’ for GLMs
requires a recast to copula-‘similar’ families with fixed margins. The green are models covered
in this dissertation.

6 Appendix

6.1 Measures of dependence

Standard versions of measures of dependence are on a bivariate vector.
Kendall’s tau is a measure of the concordance between random variables. Two independent

pairs of random variables, (X,Y ) and (X
′
, Y
′
) are called concordant if:

P((X −X
′
)(Y − Y

′
)) ≥ 0 (31)

and discordant otherwise. The index ρτ is defined

ρτ = P((X −X
′
)(Y − Y

′
) ≥ 0)−P((X −X

′
)(Y − Y

′
) ≤ 0) (32)

Spearman’s rho, ρS is defined

ρS(X,Y ) = 3(P((X1 −X2)(Y1 − Y3) ≥ 0)− P((X1 −X2)(Y1 − Y3) ≤ 0) (33)

where (X1, Y1), (X2, Y2), (X3, Y3) have common distribution function F , and are indepen-
dent. Spearman’s rho, then, is the difference in concordance between a pair (X1, Y1) ∼ F and
an independent pair (X2, Y3) ∼⊥. Spearman’s rho is the Pearson’s correlation on the marginal
distribution functions.
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Both ρS and ρτ can be calculated on the ranks, and as such have copula based representa-
tions.

τX,Y = τC = 4E(C(U, V ))− 1 (34)

ρS(X,Y ) = 12E(C(U, V ))− 3 (35)

Multivariate extensions of either are generally functions from Rk → R, i.e. they take a full
multivariate copula and return a scalar. For example Wolff [1989] introduced

ρkS =

∫
Ik CΘ(u)du−

∫
Ik Π(u)du∫

IkM(u)du−
∫

Ik Π(u)du
(36)

where M(u) and Π(u) are the Fréchet upper bound copula and independence copula respec-
tively. Any possible closed form for ρkS is dependent upon the parameterization Θ. Variations on
this theme weight dependence in the multivariate structure and then the measure of association
is a weighted sum of bivariate (or higher) scalar measures of association.

In general, sample versions are calculated as ‘averages’ (often non-parametric kernels (see
Schweizer [1981], Schimd [2007] or Joe [1990]) over lesser dimensions.

An alternate approach is to compute scalars at lower dimensions - on index sets, say -
and present the group as an array. Simon [1977] computes the first Ck2 Kendall’s taus on
the bivariate index set in k and generates higher order versions using the inclusion-exclusion
principle. Redundancies are explored as flags for dimension reduction.

6.2 Elliptical and Archimedean Copulae

A copula family CΘ=Σ(u) is called elliptical if the associated density

dC(u) = φ(
1
2
uTΣ−1u) = φ(t) (37)

can be expressed as a function of a quadratic form. The matrix Σ is positive definite and is
known as the characteristic or scatter array.

For any X with scatter array Σ = (Σ(i,j),Σ(i,j),(−i,−j),Σ(−i,−j),(i,j),Σ(−i,−j)),‘ the variance
of Xi, Xj |X(−i,−j), i.e. the conditional covariance - or dependency - for Xi, Xj ; i, j a pair, (i, j)
all pairs, (−i,−j) all pairs save i, j, is:12

Σi,j − Σ(i,j),(−i,−j)Σ−1
(−i,−j)Σ(−i,−j),(i,j) (38)

.
In the case X ∼ Ellipk, 2-dependence, Σ−1

(−i,−j)Σ(−i,−j),(i,j) = I and thus the conditional
variance Xi, Xj |X(−i,−j) is just the pairwise matrix Σi,j .

Briefly, a copula family is called archimedean if the copula for uk = FXK
13 can be expressed:

C(uk) = φ−1(
k∑
i=1

φ(ui)) (39)

12This bivariate assumption is, implicitly, held in the specification of Σ as a rectangular matrix. Suppose, this
supposition is unjustifiable for one pair say, where xi′ is some latent intermediary, i′ ∈ I. This means that the
appropriate parameterization is θij = (θij1, ...θiji′ , ...). Then K is an I × J × I ′ cube. Etc. Etc.

13Let uk = FXK = (u1, ..., uk) = (FX1 , ..., FXk )
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where φ ∈ L∗∞14 is a function from IK to R+. See Nelsen [1999] and Joe [1997].15

Take φθ(t) = (−log(t))θ, then the above construction yields

C(u) = exp{−[
k∑
i=1

(−log(ui))θ]−1/θ} (40)

the Gumbel-Hougard family, for example. Here, the dependency is held in parameter θ; θ = 1
yields the independence - the product copula.

6.3 Multivariate Copulae

Joe [1997, 2001] highlights some the inherent difficulties in the construction of multivariate
copulas (with dimensions greater than 2). Non-elliptical and non-archimedean distributions
have large parameter spaces - in general the dimension of the parameter space is bounded
by the dimension of the power set of k. A multivariate exponential survival distribution, for
example, F (x) = exp{

∑
s∈S λsmax(xisi)}, where S is bounded in dimension by 2|S|.

One approach is to generate multiple parameter copulae via a ‘mixing’ approach outlined
by Marshall and Olkin [1986]. The general theorem states that any distribution function can
be generated as a mixing distribution: Let H1, ...,Hk be univariate distributions functions; let
G be a k−variate distribution function with such that Pr(Z1 > 0, ..., Zk > 0) = G(0, ..., 0) = 1
and marginals Gi; let φ and φθi be Laplace transforms of G and Gi; θ = (θ1, ...θk). Then, for
any K a k-variate distribution function with uniform marginals (K a copula type distribution
function)

H(x) =
∫
· · ·

∫
K(exp{−φ−1

θ1
H1(x1)}, ..., exp{−φ−1

θk
Hk(xk)})dG(θ) (41)

is a k−variate distribution function.
Let Kδ have the form of a 1 parameter Archimedean copula as in (39)

Kδ(u, v) = φδ(φ−1
δ (u) + φ−1

δ (v)) (42)

with φδ a Laplace transform parameterized by δ. Then

Cθ,δ(u, v) = ψθ(−logφδ[φ−1
δ (e−ψ

−1
θ (u)) + φ−1

δ (e−ψ
−1
θ (v))]) = ηθ,δ(η−1

θ,δ(u) + η−1
θ,δ(v)) (43)

where ηθ,δ(s) = ψθ(−logφδ(s)) in a natural two parameter extension of the
Archimedean copula generator representation. Junker and May [2005] provide a succinct recap
by setting φδ as an Archimedean generator, gθ1 : [0, 1]→ [0, 1] and fθ2 : [0,∞)→ [0,∞) strictly
concave and convex functions. Then φδ ◦ gθ1 and fθ2 ◦ φδ are both two parameter Archimedean
copulas, as well.

This generator composition can be extended to k dimensions, yielding copulae with k − 1
parameters. These parameters, though, are constrained to be decreasing, which restricts the
shape of the ‘dependency gradient’, in analogy with the positive definitiveness constraint for
the multivariate Gaussian. There is no automatic multivariate extension for broad classes of
dependency — copula models are bound in shape, similar to ordinary joint distribution functions.
A reasonable approach — at this point — is to model lower dimensions with various copula and
compose/average across these lower dimension models.

14Let L∗∞ be the class of infinitely differential decreasing functions with alternating signs. This is the class of
completely monotone functions.

15The laplace transform, φ(s) = L(b(t)) =
∫

R+ e
−sb(t)dt, holds a special place as a generator for mixing distributions

of the archimedean type. In general, φ need only be in L∗∞, ibid.
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Full models, i.e. one copula family on a high dimension, constrain the ‘dependency gradient’
and may not capture varied dependency on lower orders. On the other hand, partite models on
lower dimensions must be intelligently combined to yield consistent results on high dimensions.

We apply the partite approach by fitting two parameter copula families at bivariate margins
in Abayomi [2008b] and apply the full model via ‘dependency gradient’ here.

6.4 PCA Whitening

Recall that the PCA program reduces the search for B with the constraint E(yiyj) = 0 - the off
diagonal covariance is zero.

Following the illustration in Cardoso [1998] and Lee [2000]: under the assumption in (7),
further assume that E(sst) = I; s is said to be ’white’. In general y is said to be ’whitened’ if

E(yyt − I) = 0 (44)

Let z = Wx such that z is whitened. Then set A = RW , that is Y = RWx. The procedure
is to ’whiten’ or decorrelate the source data before searching for rotation matrix R. R, then, is
the basis on decorrelated data.

Some version of decorrelation pre-analysis is - almost uniformly - applied to most ICA algo-
rithms.

6.4.1 Whitened PCA via Copula

The copula approach illustrates the similarity between ICA and PCA: PCA is a special case of
ICA. In the notation of (21) and (25), general G(y) and Gi(yi) are multivariate and univariate
normal - C(u) is the gaussian copula.

Here we ’whiten’ x via ordinary PCA: z = Wx. We then compute a version of (6) on
’whitened’ z: IΘ(zi, zj) = ((H(Cθij (zi, zj)))). The eigenvectors of IΘ(zi, zj) - etΛe - yield
y = etz = etWx.

Tipping and Bishop [1997] demonstrate that the subspace spanned by maximum likelihood
is congruent to the subspace spanned in Probabilistic Principal Component Analysis (PPCA) -
an extension of PCA where the source distributions are explicitly defined. The generalization
of their result - the suggestion that eigen-decomposition of a maximum-likelihood matrix (and
thus mutual information matrix, by the argument in section 2) is sufficient for CICA analysis -
is a topic for future research.
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