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Abstract

We consider three sorts of diagnostics for random imputations: (a) displays of the completed
data, intended to reveal unusual patterns that might suggest problems with the imputations,
(b) comparisons of the distributions of observed and imputed data values, and (c) checks of the
fit of observed data to the model used to create the imputations. We formulate these methods
in terms of sequential regression multivariate imputation [Van Buuren and Oudshoom 2000,
and Raghunathan, Van Hoewyk, and Solenberger 2001], an iterative procedure in which the
missing values of each variable are randomly imputed conditional on all the other variables in
the completed data matrix. We also consider a recalibration procedure for sequential regression
imputations. We apply these methods to the 2002 Environmental Sustainability Index (ESI), a
linear aggregation of 64 environmental variables on 142 countries.

1 Introduction

When considering models to impute missing data, the hypothesis of missing-at-random (MAR) can,
inherently, never be tested from observed data. However, any specific imputation model, whether
MAR or not, will be fit to observed data, and that fit can be checked. In particular, we propose
checking the fit of multivariate imputations by examining the model for each imputed variable
given all the others. From a Gibbs sampling perspective, we are checking the fit to data of each
full conditional distribution.

Additionally, the completed data sets can be checked for plausibility, though this is not a formal
hypothesis test since the plausibility check inherently uses external information or speculation -
e.g., that a particular variable should not have bimodal distribution, say, in the complete data - it
is a means of diagnosing possible problems with the imputation model.
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1.1 Missingness

Multiple imputation (MI) has become popular in the twenty-five years since its formal introduction
[Rubin 1978], and a variety of imputation methods and software are now available [e.g., Schafer
1997, Van Buuren and Oudshoom 2000, and Raghunathan, Van Hoewyk, and Solenberger 2001].
The development of diagnostic techniques for multiple imputation, though, has been retarded by
the belief that the assumptions of the procedure are untestable from observed data. The argument
is, generally, that the quality of imputed data cannot be checked; imputed values are guesses of
unobserved values, which are unknown.

There are at least two responses to this argument:

1. Imputations can be checked using a standard of reasonability: the differences between ob-
served and missing values, and the distribution of the completed data as a whole, can be
checked to see if they make sense in the context of the problem being studied.

2. Imputations are typically generated using models (such as regressions or multivariate distri-
butions) fit to observed data. The fit of these models can be checked.

Diagnostic techniques do exist: we can characterize them as external—comparisons to outside
knowledge—or internal—specific to the observations and modeling. This paper illustrates how
a battery of techniques, of both types, can serve as a comprehensive method for assessing the
goodness of imputed data.

We apply these diagnostics to a randomly selected completed dataset constructed using a multi-
ple imputation procedure. The completed data was used to construct an index of environmental
sustainability. We believe this approach is appropriate for the broader applied statistics commu-
nity as well as environmental indexers. On the one hand we seek to introduce our method as a
semi-automatic post-imputation procedure. On the other, we recognize that the particular findings
are specific to environmental indexing. We hope that researchers in other applied fields will adapt
these diagnostic ideas to the specific features of their problems.

1.2 The ESI...

The Environmental Sustainability Index (ESI) was created as a measure of overall progress towards
environmental sustainability and designed to permit systematic and quantitative comparison be-
tween nations [World Economic Forum 2002]. The ESI is a scaled linear combination of 64 variables
of environmental concern. Environmental measures (such as oxide emissions and concentration)
are included along with political indicators relevant (such as civil liberty and level of corruption)
that are relevant to environmental sustainability [World Economic Forum 2001, 2002].

The ESI, like other indices of environmental concern (such as the environmental wellbeing index
(EWI), and the human development index (HDI)) condenses dissimilar social and physical metrics
into cohesive summaries for national level comparisons [Prescott-Allen 2001, UNDP 2002]. Our goal
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for the 2002 ESI was to capture the most recent version of available data to get the best snapshot
for 2001. Our approach was to use the most recent year available for each variable at each country.1

The breadth of the ESI - 64 dissimilar variables from varied sources - presented aggregation and
processing challenges beyond missingness. Some variables are composites of information from
several sources: pollutant yield divided by land area conditioned on population density, for variables
in the ‘Environmental Systems’ and ‘Environmental Stresses’ indicators - for example. Others may
be imprecise across observations: mortality and disease variables in the ‘Vulnerability’ indicator,
for instance. See Annex 1 and Annex 2 of the 2002 ESI report for elucidation [World Economic
Forum 2002].

The ESI can be partially disaggregated across measurably similar groups of variables (components).
See Figure 1.

1.3 . . . and missingness

As noted in the ESI [2002] report, “missing data are an endemic problem for anyone working with
environmental indicators.” Environmental data are often dissimilarly reported across regions or
nations—rendering the data quality poor, missing, or so incomparable that variables need to be
treated as missing. Index constructors tend to use simple missing-data methods such as casewise
deletion and column averaging. For example, the 2001 ESI set missing values to the minimum of
three univariate regressions. Broadly, index constructors are less concerned with the point estimate
of a missing value and more with the final value of the index—a complete-data statistic. Within
social science literature writ large, however, multiple imputation—the process of combining a set of
missing value estimates—is becoming a popular tool [see Rubin 1996]. Multiple imputation allows
inference on a complete-data statistic, by fitting a complete-data model to the observed data.

A variable is missing completely at random (MCAR) if the probability of missingness is the same
for all units. Missingness is generally not completely at random, as can be seen from the data
themselves. For example, in the ESI, some countries are much more likely than others to have
missing observations. A weaker condition is missing at random (MAR): where the probability that
a variable is missing depends only on available information. For example, if a variable is more
likely to be missing for countries with low values of per capita GDP, and this GDP predictor is
available for all countries, then this pattern could be missing at random but not missing completely
at random. Lastly, both assumptions are violated if the probability of missingness varies and cannot
be characterized by an available predictor: this condition is called not missing at random (NMAR)
[Rubin 1976, Little and Rubin 2002].

There are imputation procedures that do not require the MAR assumption, such as selection or
pattern-mixture models (see Heckman [1976] and Little and Rubin [2002]). It is common in practice,
however, to impute using regression-type models fitted to the available data under the missingness
at random assumption, with the understanding that these imputations, while imperfect, may be
useful, especially if the fraction of missingness in the dataset is small.

1Consider, for example, a time series variable. Ideally each country would be fully observed to the most recent
year - 2001. Some observations are censored at different years - one at 2000, another at 1999, perhaps.
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Environmental Systems (13 variables) Measurements on the state of natural
stocks such as air, soil, and water.

Environmental Stresses (15 variables) Measurements on the stress on ecosystems
such as pollution and deforestation.

Vulnerability (5 variables) Measurements on basic needs such as health, nutrition,
and mortality.

Capacity (18 variables) Measurements of social and economic variables such as
corruption and liberty, energy consumption, and schooling rate.

Stewardship (13 variables) Measurements of global cooperation such as treaty
participation and compliance.

Figure 1 Components of the 2002 Environmental Sustainability Index (ESI).

In principle, it is impossible to test the assumption of missingness at random without additional
data collection, since the information that would be used to make such a test is, by definition,
unavailable. We suspect that this theoretical difficulty has discouraged researchers and practitioners
from developing diagnostics for imputations.

However, there can be indirect evidence of problems relating to the missingness assumptions, and
thusly the imputation model. For an example, consider the observed and imputed data for the
BODWAT variable—a measure of the industrial and organic pollutants per available freshwater
(Metric Tons of BOD Emissions per Cubic Km of Water) [ESI 2002]. Most of the observed data
are on the order of 10−1 to 101. The exception is Kuwait, which, as a net importer of freshwater, is
at 109. Under the general MAR assumption, one imputation draw is at the right tail of the observed
distribution. The imputation model is sensitive to this outlier; the completed data distribution is
bimodal. In the absence of extra information (e.g. knowledge of water policy in Kuwait) it would be
natural to suspect the model underlying the imputations, and it would be appropriate to examine
the observed data more closely.

We illustrate in Figure 2. In this example, the assumed normal distribution for the complete-data
distribution of BODWAT is clearly wrong. This is our point: one might naively think that missing-
data models are inherently uncheckable, but here we can see that the normal model, if valid, would
lead to implausible conclusions about the observed and missing values of this variable.

In general, evidence of departure from the missingness assumptions are not necessarily apparent as
problems in the residual distribution of the imputation model. Even if the residuals appear correct,
the completed data may look implausible. The model itself may not fit; the model may fit and a
bimodal distribution (like that in Figure 2) is correct; the model may fit the observed but not the
missing data. In these cases, the diagnostic in Figure 2 will flag variables which deserve further
inspection.

For another context in which missing-data models can be checked, consider selection models, which
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Figure 2 Example: Completed and observed data for BODWAT (axes transformed for illustration), with
imputations based on a fitted normal distribution. The completed data (histogram) in the leftmost graph
are bimodal. Observed data are shown in blue, imputations in red, completed data in black. The histogram
(center) has the imputed data, from one draw, at the right tail of the distribution. The observed outlier
is rightmost and blue. Imputations generated under this model are incorrect. The model would be flagged
because the imputed data markedly differ from the observed. A post hoc plot of the completed data illustrates
the problem: the influential outlier in the imputation model (blue at upper left of third plot) is Kuwait.
Available observed data for cases where BODWAT is imputed may be similar to Kuwait; the imputation
model at this variable has, incorrectly, low precision. This example illustrates where a diagnostic method
can highlight problems in an automated imputation procedure: here, as is common in default imputation
models, the normal distribution imputes values near the arithmetic mean. The extreme outlier exaggerates
this effect. The imputation algorithm cannot know that Kuwait would be a problem; the post hoc diagnostic
flags the problem with the imputation model.

are sometimes used for sensitivity analysis of imputation procedures. For any example, the con-
structed completed dataset given any selection model can be examined. If, for example, it looks
bimodal, with observed data in one mode and missing data in the other mode, this may go beyond
believability—thus suggesting limits to the range that sensitivity must be tested. This is related
to the index of sensitivity to non-ignorability [Troxel, Ma, and Heitjan 2004].

The graphical displays just described are external (in the sense of the observed dataset) diagnostics
of an imputation procedure. There is no internal test of missingness at random (or, for that
matter, of whatever non-missing-at-random model might be used). However, internal tests can be
performed of the imputation model itself, in the context of the observed data used to fit the model.
We shall focus on sequential regression imputation models, so that standard regression diagnostics
can be used to check model fit and recalibrate if residuals do not have mean value zero conditional
on available predictors. Our general procedure is to use external tests to flag possible problems
which then must be checked using subject-matter knowledge. Internal tests can be performed more
automatically, by analogy to regression diagnostics.

These examples illustrate where and how external tests motivate inspection of the multivariate
model used to generate the imputed data. Remember that the goal is not data modeling, but
generation of a (completed) data statistic. In both of the illustrated cases, a poor imputation
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Figure 3 For each country, percent of variables missing, plotted vs. ESI and GDP, with fitted lowess lines
[Cleveland 1979]. Countries with higher environmental sustainability indexes and higher incomes tend to
have fewer missing items. The graphs clearly demonstrate that the variables are not missing completely at
random.

procedure could easily be obscured by the completed data. As well, violations of the random
missingness assumptions could be hidden behind a completed data statistic. In MI, the multivariate
model, even when implicit, can and should be checked using comparisons of observed and imputed
distributions, under a default assumption modeling idiosyncracies are distinguishable. Indeed, a
fortiori, using the completed dataset to check the MI model should flag, at least, where the modeling
may be inappropriate—if not explicitly where the missingness assumptions are not met.

1.4 . . . and missingness in the ESI

As is shown in Figure 3, the countries with low environmental sustainability indexes and low
incomes tend, unsurprisingly,2 to have more missing items in the ESI. (ESI and per-capita GDP
are positively correlated, but this correlation is only 0.4.) Figure 4 displays the overall pattern of
missing data: every country is missing some data, and a total of 19% of the data will be imputed.
In this take we ignored possible temporal dependence in the missingness structure. Observed values
were observed at the most recent year available; missing values were completely missing across the
length of any time index. Constructing the ESI using only available cases would have severely
restricted its scope; yet it was important to have a reasonability check for the imputations. As
such, we sought an automatic method to screen the imputations and identify potential problems.
This motivated the suite of tools developed in this paper.

2Data collection is usually an expensive task. In the context of non-random missingness, poorer countries may
have less ability, as well as lesser motivation, to collect and report environmental data broadly.
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Figure 4 The pattern of missingness—missing values in white. Countries are listed in rank order of ESI.
(Kuwait is the first country on the abscissa, Finland is the last.) Variables are listed in order of number
of missing items in the ESI. On the bottom, with 101 missing values, is GMS.SS (Global environmental
Monitoring System - Suspended Solids).

2 Methods

2.1 Multiple imputation using sequential regressions

We begin with a dataset—a data matrix with missing values—and suppose that the user has already
decided on a multiple imputation procedure, fit it to the data, and constructed a set of imputations.
We then have several imputed completed datasets. Our diagnostics can be applied independently
to each completed dataset. These methods are intended for multiple imputation procedures where
the imputations are draws from a predictive distribution. For simplicity we shall work with just a
single randomly-chosen imputation in our example. Strictly speaking, our approach is applicable for
any random predictive imputation model. Most likely - in practice - these methods could be used
in multiple imputation where many completed datasets are generated [See Rubin 1996] and then
diagnosed. While any one imputation will yield multitudes - problems that should be illustrated
by imputation diagnostics - a further research question is how to examine multiple imputations
without being overwhelmed by the graphical displays.

We shall assume the imputations have been constructed from a model of the data. Multivariate
models that have been used include the normal, t, and general location families [Liu 1995, Schafer
1997]. More generally, Van Buuren, Boshuizen, and Knooket [2000], Van Buuren and Oudshoom
[2000], and Raghunathan et al. [2001] define imputations using a set of marginal conditional dis-
tributions, a more general—though potentially inconsistent—specification that allows imputation
singly at each variable conditional on all the others in the dataset (see Gelman and Raghunathan
[2001]). Sequential regression multiple imputation (SRMI) proceeds by partitioning and ordering
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the dataset by number of missing items, then imputes the least missing variables before the most
missing at each round of the procedure. The key idea is to see multivariate imputation as a linked
set of regression models, or analogously chained equations, and proceed iteratively until convergence
in model parameters is achieved.

We used the Raghunathan et al. [2001] software, in the end imputing approximately 19% of the
data for the ESI.3 We imputed a total of 10 complete datasets and constructed an estimated ESI
on the average of those 10.

2.2 Flagging: tests of difference between the observed and imputed data

The task here is to identify where imputations markedly differ from observed values. Differences
can originate from the model used to generate the imputations or can indicate a more serious
violation of the missingness assumptions. In both cases the flagging compares the imputed values
to the observed. In the sense that the completed dataset is model generated, these are tests
of the imputation mechanism. A raised flag indicates a potential problem with the imputation
mechanism which could be specific to the generation model, or, more broadly, an inability of the
model to capture violations of the missingness assumptions.

There are no foolproof tests of the assumptions of the imputation procedure. We will judge the
propriety of the imputed values by comparison with the observed. Again, we cannot actually test
unobserved values for agreement with an unknown true distribution. We claim that the fit of
the multivariate model, in this case an imputation model, must always be checked: it is natural
to check the model against the observed data. Chained equation approaches such as SRMI are
particularly amenable to multivariate model checking. It is a misconception that the possibilities
of non-ignorable missingness implies that imputations are uncheckable. Every model, in general,
has untestable aspects—imputation modeling is not uniquely characterized by untestability. For
imputations the end result is the complete dataset, which suggests the existence of hypotheses
about characterizations of a complete dataset. The point is that imputation modelers usually have
a notion about what this complete dataset looks like, and can use these notions to frame their
flagging procedures. We can discard the imputed values in cases where they pathologically differ
from expectation—in a few cases, we did just that. In many others, however, our expectations
remained uninformed and pathology in the imputations was ill-defined. Our goal was, again, to
test the propriety of the imputations, flag potential problems, and fix or refine our imputation
model.

We emphasize that differences in distribution between the imputed and the observed do not neces-
sarily indicate violations of the missingness assumptions or problems with the imputation model.
Some deviations between observed and missing values can be expected under MAR, but extreme
departures require assessment for plausibility. In the absence of true tests, though, we can—and
must—exploit the dependence between the completed dataset and the missingness: the observed
values provide a basis.

3Of the 64 variables in the ESI, 24 were not included in the imputation process at all, for reasons entirely based
on the ESI context and having nothing to do with the statistical analysis. We are using the method described in this
paper to evaluate the imputations for the remaining 40 variables.
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2.2.1 Density comparisons

We can numerically compare the empirical distributions of the observed and the imputed using the
Kolmogorov-Smirnov test for each variable, raising the flag when we find statistically significant
differences.4 We also examine empirical densities visually.

Differences in distribution do not necessarily signal a problem with the imputations: the distribu-
tions of missing data can differ from the distributions of the observed data while still being missing
at random. In fact, if the data have been imputed using this assumption, then any differences in
distributions are necessarily explainable by other variables in the dataset. Nonetheless, as discussed
in the hypothetical examples of the appendix, dramatic differences between the imputed and ob-
served data can suggest a potential problem, and in a context with many imputed variables, it is
helpful to have some screening devices to identify these potential problems.

We treated the empirical density plots as flags for potential problems with the imputed estimates—
in a sense the empirical density plots are visual representations of the KS tests.

Classical statistical significance provides a convenient cutoff rule that seems to work well in our
example. More generally, a procedure for deciding which discrepancies to further examine should
reflect the cost of performing the further examination along with the potential costs of skipping
over a variable. In general there is no reason to suppose that setting a 5% significance level will be
appropriate, but we present this rule here as a starting point, worthy of further examination. To
the extent that we can examine the distributions visually, this is not necessarily a crucial issue in
practice. However, in a general implementation we would at the very least allow other thresholds
to be considered and perhaps have alternative rules such as selecting for initial examination the
10% of variables whose KS statistics are the most extreme.

2.2.2 Bivariate scatterplots

Bivariate scatterplots allow us to compare the internal consistency of the missing and observed ob-
servations with respect to a continuous predictor. In this diagnostic we look for obvious differences
between the distributions of the variable as it relates to the predictor. Coupling these plots with the
empirical densities allow us to flag differences in distribution as problematic—we look for unusual
patterns in the internal data (observed and imputed) with respect to our external knowledge. Both
are important: the external knowledge at each variable and the internal (KS test type) difference.

Figure 7 is an example of these type of comparisons - we plot the completed data against the ESI.
The ESI includes external knowledge - data not included in the imputation procedure - and internal
data. Each completed variable can be plotted against external or internal data separately, as well.

4The p-values for these tests are approximate; the imputations are generated from the observed data, thus the
empirical distributions of the imputations are not independent of the observed.
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2.3 Fitting: tests of the fit of the imputation model to the observed data

2.3.1 Residual plots

The SRMI software of Raghunahan et al. [2002] does not allow inspection of the imputation model—
this is a disadvantage with respect to checking the validity of the second MI assumption. We
constructed a proxy for the iterated SRMI models, however, by selecting the best stepwise model
at each variable in the completed data (Yj) regressed on all others (Y−j). We generated predicted
values (ŷij) for the 40 variables in the analysis, and we consider these analogs for the unavailable
predicted values from the SRMI complete-data models. Each residual rij is the difference between
the observed value in the completed data and the prediction of the best stepwise regression. For
the imputed data this is the difference between the predicted value of the SRMI model and the
best stepwise model. For the observed data this is the traditional residual.

Under the model, the pattern of residuals versus expected values should be random: we generate
the imputations from a series of linked, linear regressions.

2.3.2 Fixing the imputations

The aim here is to refine the complete-data model: we believe that we can improve the imputed
values by capturing the non-random patterns in the observed and then updating our guess for each
imputation.

We fit a lowess curve [Cleveland 1979] to each of the scatterplots of residual differences between
an available stepwise model (one we obtain by regressing each variable on all other variables in
the completed data) and the SRMI output. In general, where the imputation model is available,
we would fit a curve to the observed values vs. the residual differences between the observed and
the predicted. We would then update the imputations only, using the curve as the proper residual
function. In this paper, we use the lowess curve - in general other functions are possible. Please
see the Appendix, section 4.

We applied our method of residual refinement to a sample environmental dataset [Johnson and
Wichern 1998] under complete (MCAR), random (MAR) and nonrandom (NMAR) missingness
mechanisms. See the Appendix.

When the assumption of random missingness is true, differences in the pattern of residuals indicate
a deficiency in the imputation model which the residual calibration corrects. However, when the
assumption is false, differences between observed and imputed are not correctable by the residual
calibration.

It can be difficult to fix the imputation with the proposed method because fixing is done based on
marginal distributions. Marginal adjustments to the imputations in the presence of an incorrect
imputation model may introduce incoherence. When problems are found, the imputer should refine
the imputation model to create improved imputations that are consistent. With data analysis in
general, careful model building is critical when the fractional missing data information is large for

10



Environmental Systems NO2(y)—urban NO2 concentration; SO2—urban SO2 concen-
tration.

Environmental Stresses NUKE(y)—Radioactive waste; WATSTR—Percentage of the
country’s territory under severe water stress.

Vulnerability DISRES(y)—Child death rate from respiratory diseases; WATSUP—
Percentage of population with access to improved drinking water supply.

Capacity SCHOOL(y)—mean years of schooling (age 15 and above); GASPR—Ratio of
gasoline price to international average.

Stewardship FSHCAT(y)—total marine fish catch; FSHCON—seafood consumption per
capita.

Figure 5 ESI component groupings and variables used to illustrate flagged, and unflagged, differences.
The significantly different variable—flagged variable—is indicated with (y).

subsequent complete-data analysis.

3 Application

We illustrate the proposed methods with the data and imputations for the Environmental Sustain-
ability Index. We look at all variables, first, and then each subset more systematically—tailored
to this application. A first step is to look at density plots of variables which are flagged via KS
type tests, see Figure 6. A second step is to display the observed and imputed data for all imputed
variables, versus the overall index, as shown in Figure 7. We discuss these plots in particular for
a group of variables (a ‘component’) in the ESI. As practitioners, we would investigate all of the
data similarly.

3.1 A quick look at all the variables

There are plausible explanations for the differences in scatterplot patterns that we see when plotting
the data from each variable versus the composite ESI score in Figure 7. Taking the environmental
systems group as an example: we may expect that some countries with lower values, in GDP for
instance, will have higher emissions—a finding that does not contradict environmental theory.5

This sort of information is easy to illustrate but, perhaps equally as easily, can be hidden if the
user focuses on the complete-data summaries without checking the imputations.

We demonstrate in this subsection and the next, via (what we believe could be) semi-automatic
processes, that methods of exploratory analysis designed for imputation procedures can specifically
highlight, address and yield “better” complete-data statistics.

5An example is the BODWAT variable; see Figure 2.
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Figure 6 Left side: for each component of the ESI, a variable whose imputed values (red) differ significantly
from observed values (blue). Right side: for comparison, a variable from each component which we did not
flag. Possible flaws in imputations may appear in the graphs even when not indicated by the KS tests. As
well, apparent differences in density plots may not be ‘flagged’ by the KS test - in particular where there are
few imputes: n = 2 for WATSTR and FSHCON. Diagnostic by visual inspection is necessary.

We begin by quickly identifying the variables in which imputed values different greatly from ob-
served data. In all, about half of the imputed variables have KS tests indicating a statistically signif-
icant difference between observed and imputed values. The KS tests flag five variables as extremely
problematic (approximate p < .001): NO2 concentration (NO2), radioactive waste (NUKE), child
death rate from respiratory diseases (DISRES), mean years of schooling (SCHOOL), and total
marine fish catch (FSHCAT).

For a brief illustration we select a ‘flagged’ variable within each ESI component grouping, see
Figure 5, as well Figure 6. In comparison, for each grouping, we also chose one variable that did
not significantly differ.

Figure 7 provides a snapshot of the differences between the observed and imputed values for the
entire data — in some cases the differences are striking. Differences in the distributions are either
functions of differences in the predictors - or functions of the latent missingness mechanism. In the
latter case, we may expect that some countries misreport or restrict—intentionally or not—data
(for example air and water particulate concentrations). In the former case, we may believe that
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Figure 7 For each variable, its observed and imputed values for the 142 countries, plotted vs. the Environ-
mental Sustainability Index. Imputed values, everywhere, are in red. Observed values are blue. At a glance
there is evidence for nonrandom patterns of missingness in many variables, as discussed in detail in the text.

anomalies in distribution, in a few cases, are caused by just a few influential observations. For
example, extreme outliers in the distributions of WATCAP and WATINC (internal water capacity
and per capita inflow) are idiosyncratic. As discussed earlier, Kuwait imports most of its water.
The conclusive statement is that the completed ESI data demands a thorough diagnostic review.

3.2 A closer look—Environmental systems

As an illustration we look closely at the data in one component group of the ESI. As practitioners,
we should repeat this exercise for all the data groupings. Figure 8 is an example of the sort of
requisite post-imputation diagnostic plots we produce.
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The environmental systems variables in this component are national level measures of the stock,
or present state, of environmental quality. The data for environmental systems should be generally
comparable across nations in the sense that the true values are easily observable and calculable.
However, this component had the highest rate (36%) of missingness.

The KS test flagged the imputation of NO2 as significantly different, but not that of SO2. Excluding
NO2 is not possible—we need both concentrations to return a full measure of air quality. We treat
the KS test as an indicator, but not a determinant, of a potential problem. The difference in the
distributions between observed and imputed values of NO2 appears to be driven by overprediction
at moderate to moderately high levels. Again, this may or may not be problematic—it is possible
that higher polluters have not reported appropriately and that we are imputing them correctly. At
a glance, the imputed values of NO2 look more different from the observed values—with respect
to SO2. One or two cases appear to drive the upward trend in NO2 imputations (Iran). Our
supposition may be correct: the residual values for the imputations of NO2 have a greater magnitude
and predicted range than the observed values. The values for SO2, in contrast, are more similar.

We adjusted the imputations for both variables by fixing the residuals of the imputations to match
the lowess curve through the residuals of the observed. The adjustment affects the univariate
histogram of SO2 more dramatically than NO2: the distribution of the imputed values matches
the observed more closely. SO2 was not flagged as significantly different-the recalibration may not
be appropriate.

As noted at the beginning of Section 3, we apply similar checking procedures on the remainder of
the ESI data. In this fashion, we reduce the problem of checking the full multivariate imputation
or completed data statistic to a series of decisions which may be influenced by the practitioner’s
knowledge of each variable.

4 Discussion

Missingness in the ESI arises from the dearth of environmental metrics and is attenuated by the
breadth of the ESI’s coverage. The ESI has a high number of missing items because it broadly
defined.

We already know that countries with more missingness have performed worse on the observable
measurements; we don’t know if the level of performance on unobserved measurement is dictating
the missingness—several of the tests are suggestively affirmative. We can at least state that the
distributions of the imputed and observed values differ, and we should state the there is evidence
that the differences are attributable to the level of measurement—in violation of the least restrictive
of the missingness assumptions. It is possible that many of the data are not missing at random.

The model used here for the imputations is far from perfect. In fact, the point of this paper is
to develop semi-automatic diagnostics in recognition of the fact that missing values are typically
imputed using semi-automatic procedures.

In our examples, we flagged some problems and then reviewed the imputations that highlighted
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Diagnostic Graph: Bivariate Scatterplots, Adjusted Residuals, Recalibrated Histograms

Figure 8 Environmental systems. NO2 is flagged as significantly different by KS test. Bivariate scatterplots
highlight distributional differences. SYSAIR is a composite of air quality measurements used in the ESI.
APOL is a composite of air quality measurements not used in the ESI. POPDENS is a measure of population
density. The residual plots plot the predicted values from the best stepwise regressions against the difference
between the (randomly selected) imputation and this predicted value. Histograms of the updated imputations
are on the final rows.

obvious potential flaws. We began with numerical diagnostics—the Kolmogorov Smirnov tests—to
flag problems, and we attended to the flags by using semi-automatic graphical techniques.

We recommend that these methods be applied en suite, perhaps as an included suffix to a stan-
dard MI package such as MICE [Van Buuren and Oudshoom 2001].6 With a specified, available,
imputation model, we would expect the refinement procedure to perform “better”—in the sense
that discord between the imputed and observed observations will be more clearly characterized.

We have used post hoc methods to compare and adjust imputation models, in a sense investigating
meta-parameterizations of missingness mechanisms. By flagging sets of imputations that look
particularly troublesome, using observed values and related external values, we have shown—at
least—where we should lower our confidence in our imputed values. Further, we have investigated

6Think of a graph array—Figure 8—for each of the components, as a complementary, necessary diagnostic output
to a completed dataset for any imputation software.
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where we can improve upon our imputation model by revisiting the observed and exploiting the
difference in patterns of the observed and missing data with respect to the imputation model.

Finally, the ESI is an attractive case for the development of MI diagnostics. Environmentalism in
general, and sustainability in particular, have much to do with what is unknown about the system-
atization of individually well-understood concepts. The ESI is a case where we can intelligently
diagnose and correct problematic imputed values: we have at our disposal rich internal, as well
as external, information and require only a framework from which to procedurally investigate and
correct our modeling.

A Appendix

A.1 Computation of the ESI

The environmental sustainability index [World Economic Form 2002] is defined as ESI = 100 ∗
Φ

(
1
|K|

∑
k∈K

1
|Jk|

∑
j∈Jk

(
Yj−Y j

Syj

))
. Here: Y = (YJ1, . . . ,YJk), Jk is the index set for the variables

in the kth ‘indicator’ of the ESI [See WEF 2002]; K is the index set for the indicators; |K| and |Jk|
are the number of indicators and number of variables in the kth indicator; Y j is the sample mean
for variable j, Syj is the sample standard deviation for variable j, Φ is the inverse standard normal
distribution function. See Figure 1 in this report and Table 3 in the ESI report [WEF 2002].

A.2 Missingness assumptions

Extending the above: Y = (Ym,Yo), where Ym and Yo are the missing and completely observed
data in order. we can say that the pattern of missingness is completely random (MCAR) if it is
distributed independently of the dataset, or f(M |Y, φ) = f(M |φ) ∀ Y, φ, where M is an indicator
matrix of the same dimension as Y and φ is a parameter - possibly unknown - which governs the
missingness process.

A weaker condition, missing at random (MAR), exists if the pattern of missingness is dependent
only upon the observed values, i.e.: f(M |Y, φ) = f(M |Yo, φ) ∀ Ym, φ. Here, the missingness
process is independent of the observed data.

We say that the pattern of missingness is not at random (NMAR) if both conditions are unmet,
that is, ∃ Y, φ, s.t., f(M |Y, φ) = f(M |Ym, φ).

A.3 SRMI procedure

Commonly, G(Y, θ) is supposed multivariate joint normal, and the missing data are imputed as
draws from the joint posterior (as in MCMC imputation). Van Buuren [2001] and Raghunathan
[2001] investigated that a G can be replaced with a set of conditional distributions G =

∏
t∈T Gt ,
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where T is some index set, for example, in many cases. Sequential Regression Multiple Imputation
(SRMI) proceeds by partitioning the dataset: Y = (Y1, . . . , YT−r, YT−r+1, . . . , YT ). in order of
missingness, where r is the number of variables with missing values, and T is the number of
variables. Then X = (Y1, . . . , YT−r); and Y∗ = (YT−r+1, . . . , YT ). Y∗ is regressed, iteratively, on
X. The steps, in this application, are

1. The first round of the SRMI algorithm begins by regressing Y1, the variable with the least
missing items, on X.

2. Now Y1 is entered into X and the algorithm regresses Y2 on (X, Y1). The algorithm continues
until YT is completed by regressing it on (X, YT−1).

3. The next round continues in the same manner, with (X, Y1, . . . , YT ) the new predictor set.

4. The algorithm cycled through the above steps until the imputed values converged.

We repeated the algorithm m = 10 times, averaged the imputed data sets, and calculated the ESI
on the final averaged imputed data set.

Gelman and Raghunathan [2001] discuss why SRMI imputations might be useful, despite a general
lack of correspondence to a particular joint model.

The SAS implementation of the SRMI procedure allows bounds to be set for each variable—we set
the allowable extrema by the observed distribution. We noticed that unconstrained imputed values
tended to ranges far wider than the observed distributions. At each variable, this may or may not
be a problem: if the missingness mechanism is, perhaps, not completely at random, difference in
the imputed values may be a function of the observed values and possibly appropriate. We cannot
say which mechanism is present and allowed for the truncation of extreme imputations.

A.4 Fixing imputations—refinement procedure

Let Ĝ be an estimate of G; Ĝ is the imputation model used to generate a complete dataset.7

Let ŷj = Ĝ(Y−j) be the predicted values from the imputation model for each (vector) variable j.
rj(yj) = yj−Ĝ(Y−j) is the residual function, which in practice is estimated by binning or otherwise
smoothing the residuals from the fitted model. In this paper we smoothed using a lowess curve.

We correct (or calibrate) the imputed values by subtracting the estimated r̂j .

A.5 Simulation study

Beginning with an example set of air quality data [Johnson and Wichern 1999] we investigated
the behavior of our imputation refinement procedure under three simulated missingness mecha-

7In the example in this article, Ĝ is set as the best stepwise regression of Yj on Y
(k)
−j . More generally Ĝ could be

obtained from a multivariate model (e.g., [Schafer 1997]), sequential regressions (e.g., [Raghunathan 2001]), or other
methods.
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Figure 9 Simulated imputation refinement on air quality data. The first two graphs in each row are the
distribution of O3 before and after recalibration. The last graph in each row are the observed data. The first
two rows are imputations and recalibrations under MCAR and MAR models. The refinements more closely
mimic the distribution of the observed under MCAR and MAR missingness mechanisms. Under NMAR the
refinements perform less well - the imputed distribution has a wider range than the observed.
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Figure 10 Simulated imputation refinement on air quality data. The first two graphs in each row are
the distribution of NO2 before and after recalibration. The last graph in each row are the observed data.
The refinements match the distribution of the observed better than the original imputations under MCAR
missingness. The range of the refinements is greater than the observed under MAR; under NMAR the
original imputations more closely match the observed data

nisms: MCAR, MAR, NMAR. Let zij be 1 if observation yi,j is missing and 0 otherwise, dis-
tributed as following under each assumption: MCAR—Pr(zi,j = 1) = pj ; MAR—Pr(zi,j = 1) =
logit−1(a1j + (ŷi,j − b1)/c1); NMAR—Pr(zi,j = 1) = logit−1(a2j + (yi,j − b2)/c2).

We set the pj , a1 and a2 to decrease with j to generate a pattern of monotone missingness under
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each of the assumptions. Constants b1, b2, c1, c2 exist so that the number of missing items is
relatively equivalent for each of the missingness mechanisms.

We found, in general, that the refined imputations replicated the shape and range of the observed
distributions more closely for all missingness mechanisms. The improvement in similarity was
less pronounced, though, for imputations under the NMAR assumption — and more so for the
imputations on the MCAR assumptions.
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