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Abstract

We investigate the effect of biofuels on land use change through a case
study of U.S. corn production. Currently, agricultural models are used to esti-
mate the effect of biofuel production on crop production and, correspondingly,
land use change. As biofuel production grows, the models can potentially be
validated with statistical analysis of changes in crop production. Determina-
tion of the influence of biofuel production on other uses of the biofuel feedstock
- such as for food or animal feed - cannot be evaluated with standard statis-
tical methods because the uses of an agricultural crop are constrained: total
crop use is always the sum of the constituents. We develop a general method
for these compositional distributions, and apply this method to determine
competition between biofuel feedstock production and other uses of the same
feedstock. We find evidence of competition among corn yield constituents,
particularly with respect to ethanol production.

Introduction

The Energy Independence and Security Act (EISA) of 2007 mandates an increase
in ethanol production to 36 billion gallons per year by 2022.[1] In 2008 the United
States produced 9 billion gallons of ethanol fuel — an increase of more than 5000
percent since 1980.[5] At the same time, the total U.S. corn yield has less than
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doubled. Increases in the remaining constituents of corn use are similar — between
50 and 200 percent. See Figures 1 and 2.
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Figure 1: Fractional increase in corn production and constituents, 1980-2007, in
color: Residual food, feed stocks, exports, ethanol, and total output. The smoothed
curve suggests the trend. Yearly values are ratios to 1980 production of/by each
constituent output. Total corn yield, food and feed stocks have increased simi-
larly; residual food output has increased more dramatically. Exports have decreased
relative to 1980. Left hand graph excludes ethanol fractional increase: fractional
increases for residual food, feed stocks, exports and total output appear flat with
respect to increase in ethanol production. All data in thousands of bushels.

The environmental impacts of this mandate (net energy budget, effect on corn based
commodities, greenhouse emissions, etc.) are unresolved, significant[6], and ad-
dressed elsewhere [3]. In this brief paper we develop a straightforward method for
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using agricultural data to investigate how increased biofuel production affects pro-
duction of other agricultural crops. We illustrate the methods with a case study of
dependency within the distribution of the constituents of total corn yield, specifi-
cally:

• Feed Stocks

• Exports

• Residual Food Stocks

• Ethanol

as a fraction of total output.

At one extreme, increasing biofuel production from corn could yield more corn pro-
duction and no change in the production of corn for other uses. Oppositely, this
increase could result in an immediate reduction in other uses of corn with the in-
creased use of corn for biofuel. These phenomena can be examined from either a
crop production, as is done here, or from land use; these results are parallel and
mediated by yield.

Corn is not the only crop where these questions arise. Additional cases of interest
include: the influence of sugarcane-derived ethanol production on land use in Brazil,
the influence of soy biodiesel production on land used for soy production (note that
soy and corn production in the US are not independent - many farms practice corn-
soy rotations) and, more broadly, the influence of biofuel production even from
non-food crops on food crop production.

Currently, models of land use change from biofuel production rely either on basic
assumptions about the extent to which biofuel production displaces other uses of
the feedstock, or use agricultural models including FAPRI and FASOM (references
needed here). As biofuel production grows, there is potential to validate the as-
sumptions of these models using data on crop production and biofuel production.
We develop that methodology here.

Constituents of Corn Yield: Compositional Data

The data are 28 years — from 1980 to 2007 — of the allocations of total corn yield
in thousands of bushels ([32]). Preparatory illustrations of the fractional increases
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(Figure 1) and relative fractions (Figure 2) illustrate the nominal increase in ethanol
output and the relative increase in corn allocation to ethanol production.

Figure 2 is an illustration of the statistic of interest: the joint distribution of the
relative fractions, modulo the total yield, over time. This multivariate distribution
— strictly positive, sum fixed and inferior or equal to one — on the simplex is called
a compositional distribution and arises in many contexts (see [8], [9], [10], especially
[7]).
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Figure 2: Joint distribution of fractional inputs of corn yield, ethanol in red. The
heights of the bars are the ratio of the constituent fraction to the total corn yield
(normalized to 1 for each year). The graph is a representation of a three-dimensional
positive simplex, a four dimensional composition in Aitchison terminology: the
heights are the joint distribution modulo the total yield (and variation).[4] Depen-
dence in this compositional distribution is a function of the statistic represented by
this illustration.
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Isolating dependence in a compositional distribution is non-trivial: the restriction of
the distributional shape to the simplex imposes dependency — in particular linear
dependence — in the same way segments on a fixed interval are necessarily depen-
dent. Standard inspection and testing of a correlation matrix is insufficient for tests
of independence of the compositional distribution. Dependence metrics — like cor-
relation — based upon Euclidean distance are in fact conclusively inappropriate for
compositional data (see [11]). This characteristically constrains or wholly excludes
standard methods and tests for multivariate independence: like tests of pairwise
correlation or multivariate correlation (e.g. Fisher’s Z), or multivariate tests relying
on distributional assumptions on the covariance matrix (e.g. Wishart type tests).

There are two common, apposite methods for addressing dependency in distributions
of proportions (distributions on the simplex). The first is to use a transformation
on the compositional data, from the sample space of the simplex to the positive real
hyperplane and investigate tests in resultant distribution. The log-ratio transfor-
mation is popular; tests of independence are on the constrained covariance matrix
of the transformed data (see [12]). A second approach is to conduct testing on the
simplex space via a necessary generalization of the Dirichlet distribution — which
only admits independent or neutral components — to the Liouville distribution (see
[2] and [13]).

We engage a blend of these approaches: we transform the sample data via the log-
ratio; exploit the natural role of the Dirichlet distribution in neutrality/independence
to generate replicates with identical marginal distributions; and conduct indepen-
dence testing using the Kolmogorov-Smirnov probability measure of distance. This
technique is computationally straightforward, can flexibly allow independence test-
ing via a variety of similar metrics, and it is in the direction of the more complete
sub-compositional independence suggested by [13]. This is means of testing indepen-
dence for compositional data that is accessible to an array of practitioners.

In the body of the paper we illustrate the methodology in an accessible manner: we
confine technical concerns to the Appendix where possible.

Methodology

Let

x = (x1, ..., xk) (1)
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be a basis or open vector of positive quantities, x ∈ Rk+
— the k dimensional

positive hyperplane. In this example the positive quantities are the constituents of
total corn yield, in order (in bushels): x = (xeth, xrfood, xfeed, xxport); corn to ethanol
production, residual food stock, feed stock, and exported.

Let

yj = xj/
k∑
j

xj (2)

with y = (y1, ..., yk) the vector of fractions; in the Aitchison ([12]) terminology the
composition of the basis x. Here the yj are the (relative to the total) fractions of
ethanol, food stocks, feed stocks, and exported (bushels) of corn illustrated in Figure
2. See Appendix 1.

The log-ratio transformation sets

v j
m

= log(
yj
ym

) = log yj − log ym (3)

in a slight modification of Aitchison’s notation (where vj = log(yj/yk+1)).

Here, since the total is fixed and known, the residual is yk+1=0 and Aitchison’s vj
is undefined. This notation is a natural and useful affixation to Aitchison’s; v j

m
is

the log of the relative fraction of constituent j to constituent m. See Appendix 1.

Distributional Models for Compositional Data

The Dirichlet model for (y1, ..., yk);
∑k+1

j yj = 1; yj > 0 ∀j, with parameters α =
(α1, ..., αk+1) is:

dF (y) ∝ (1−
∑
j

yj)
αk+1−1 ·

∏
j

y
αj−1
j (4)

with α0 ≡ 0 (see [18]), and dF (·) the density.

Connor and Mossiman characterize a vector of proportions (y1, ..., yk+1) as Dirichlet
distributed in [2] and [16]. Dependency characterization, however, is insufficient for
non-independent, or non-completely neutral proportions (see [12] and as well [13]):
compositional data that are positively associated cannot be modeled via the Dirichlet
distribution which precludes an immediate (parametric) test of independence.

6



Aitchison [17] advocates the use of the log-normal distribution for the vector of log
transformed proportions v in tests of independence: a variance-covariance matrix
(Σ) is sufficient for dependency in the log-normal distribution.

Under a composition the covariance matrix has this form:

Σv ∝ diag(ω1, ..., ωk) + ωk+1, (5)

where ωj > 0, ∀j — thus the variance-covariance matrix is non-diagonal, even on
an independent composition and strictly positive. See Appendix 2.

Rayens and Srinivasan propose the generalized Liouville distribution — a gener-
alization of the Dirichlet distribution — as a richer model for compositional data
under dependence [13].

A Liouville distribution is

dF ∝ h(
∑
j

yj)
∏

y
αj−1
j (6)

with αj > 0 (as before) and h some function. Note that when h(t) = 1 − t the
Liouville distribution is the special case Dirichlet distribution with αk+1 = 1.

We propose, in an alloy and extension of Aitchison’s and Rayens’ methods, to test
independence using distance on probability measures:

• We exploit the special role of the Dirichlet as the neutral distribution to gen-
erate marginally equivalent multivariate replicates.

• We apply Aitchison’s log-ratio transform m-fold times, holding each compo-
nent of the data as the residual singly

• We generate, via simulation, the distribution for a statistic on the distance
between independence and dependence. This is a simulated distribution for a
measure of association.

K-dimensional random, sum-constrained, positive replicates are marginally Dirichlet
equivalent but jointly Liouville distributed — as such they are not necessarily neutral
or jointly independent. This allows generation of measures of association or
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Figure 3: Scatterplots of log-ratios of constituents of total corn yield (vjm), labeled
by years. m = (eth, feed, residual food, export, total) in plots (a)-(e), in or-
der. Observed log-ratios are labeled by year. Loess smoothed curve in red. The
dependence among the log-ratios appears to vary by choice of ‘residual’ m.

distance measures — computed on these replicates — to envelop dependency beyond
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mere neutrality. See Appendices 2 and 3.

Results

Figure 3 illustrates the data we test for independence. Each of the subplots (a)-(d)
are the joint distributions of the compositions with one constituent as ‘residual’.
The plots illustrate the conditional joint dependence among the constituents, with
respect to the ‘residual’ constituent.

The plots illustrate the pairwise dependence among the joint conditional distribu-
tions; a LOESS (smooth regression) curve is fit on each pair (see [30]). The plots
and LOESS fits suggest dependency exists within the subcompositions; the pairwise
plots, though, are imperfect illustrations for multivariate dependency. The data in
the plots are labeled by year.

These data are the observed values of v j
m

— the log-ratios of the compositions. We

do not fit a logistic-normal distribution ([31]) to the data; in fact, we make no distri-
butional assumption in the calculation of the distance from independence, beyond
the utilization of random, marginal Dirichlets as replicates for the compositional
data.

Statistical Dependency among Constituents of Corn Yield

Figure 4 is the distributions of the statistic for the test of independence (DΠ
n,k); for

the null composition — all of the constituents of corn yield together — and for
each of the subcompositions. The observed statistic for each is highlighted by the
leftmost border of the red shaded area: the shaded area are the replicates which
are greater than the observed distance. The statistic increases with distance from
independence; thus the shaded areas are simulated p-values for the compositions.

The subcompositions with respect to ethanol and exported corn are highly signifi-
cantly dependent — p-values of .002 and .007. The subcomposition with respect to
feed stock has a p-value of .073.

The remaining subcomposition — with respect to residual food — and the null
composition have p-values for dependence of .909 and .473 which do not suggest
evidence of dependency.

The distance statistics are scalar measures for the multivariate dependency within
each (sub)composition. The joint distribution within each of the subcompositions
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Figure 4: Histograms of the distributions of distances from independence-neutrality
(DΠ,1

n,km
, ..., DΠ,T

n,km
), for m = (eth, feed, residual food, export, total) in plots (a)-

(e), in order. Here n = 28, k = 3, 4, T = 1000. The area in red are values above the
observed DΠ for each choice of ‘residual’. These areas are analogs of p-values for
the test of distance from independence. The joint distributions of the compositions
with respect to ethanol, animal feed stocks, and exports are far from independence:
the observed p-values — 0.002, 0.006, 0.073, in order.
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Figure 5: Plots of sub-compositions with respect to ethanol. Panel (a) is the log-
ratios of residual food vs. feed; panel (b) is export vs. feed; panel (c) is exports
vs. residual food. The graphs illustrate the competition or dependency among the
remaining constituents after the residual or fixed effect of corn allocated to ethanol
production has been account for (in each year). Labels are abbreviated years. The
rates of decrease in the log ratios at each pair, from 1980-2007, are .89, 1.08 and
1.21, in order.
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Figure 6: Plots of sub-compositions with respect to exports. Panel (a) is the log-
ratios of residual food vs. ethanol; panel (b) is residual food vs. feed stocks; panel
(c) is ethanol vs. feed stocks. The graphs illustrate the competition or dependency
among the remaining constituents after the residual or fixed effect of corn allocated
to exports production has been accounted for (in each year). Labels are abbreviated
years.

furnishes the conditional dependency with respect to the residual component. The
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(highly) significant values of distance from independence for the subcompositions
with respect to ethanol, exports and feed stocks indicate that the values of these
components are strongly associated. The existence of competition among these com-
ponents, in relative fraction of corn yield, is an interpretation. In fact, the significant
dependence in the subcomposition with respect to ethanol suggests strong compe-
tition among the remaining constituents once the ethanol fraction is accounted for.
Conversely, the observed value of the dependency statistic for the subcomposition
with respect to the residual food stocks is insignificant. This is a possible indication
that the food stock allocations are not affected by competition among the other
components.

Competition among Constituents of Corn Yield

The panels in Figure 5 are scatterplots of the log-ratios of the remaining constituents
of corn-yield modulo the ethanol fraction, for every year. The illustrations suggest
strong competition among the remaining constituents after the fixed effect of ethanol
is removed: each fraction, labeled by year within each panel, decreases almost mono-
tonically from 1980 to 2007.

The log-ratio pairs in each panel decrease in each panel. The allotments of corn yield
to residual food, feed stocks and exports are much greater than to that of ethanol
in 1980; by 2004 the fraction to ethanol is greater than to residual food — by 2006
it is greater than to feed stocks and nearly equal to exports.

These plots are evidence of a crowding effect, or competition among the remain-
ing constituents of corn-yield. These effects, while perhaps monotone at each pair
(residual food vs. feed, exports vs. feed stocks, exports vs. residual food) are non-
constant. The rates of decrease — the slopes, say — of the pairwise log-ratios, from
1980-2007, are .89, 1.08 and 1.21, in order. These can be loosely interpreted as the
magnitudes of the competition among the pairwise constituents. The observed dis-
tance statistic — illustrated in panel (a) of Figure 4 — suggests overall competition
with respect to ethanol is highly significant.

Interpreting competition among the constituents when ethanol is included as a vari-
able effect is less straightforward. Figure 6, for example, is an illustration of the
log-ratio pairs (residual food vs. ethanol, residual food vs. feed stocks, and ethanol
vs. feed stocks) for the subcomposition with respect to exports. The panels in
Figure 6 suggest an overall trend of associated and decreasing log-ratios over time:
the line connecting each data year, in order, is turbulently non-monotonic. The
rates of increase of the pairwise log-ratios over 1980-2007 are 4.27, 1.71 and 0.17
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respectively. The observed distance statistic for this subcomposition — with re-
spect to exports — is illustrated in panel (d) of Figure 4. The significant distance
from independence and increasing ’slope’ of the pairwise log-ratios suggests that the
constituents of corn yield, modulo exports, are occupying an increasing and greater
share of overall corn production.

Figure 7: Log-ratios of subcomposition with respect to ethanol, food in red. The
lengths within the bars are the yearly values of vjm ; the by-year log ratio of the
constituent fraction to with respect to ethanol. Positive values indicate amounts
greater than ethanol, negative values indicate smaller values. The graph illustrates
the effect of ethanol production on the remaining constituents of corn yield: the
increase in ethanol production appears to be largely compensated for by the decrease
in export and food production until year 2000. After 2000, ethanol production
crowds out feed stocks as well; from 2005 ethanol production is greater than that
for food corn.
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Figure 8: Log-ratios of subcomposition with respect to exports, ethanol in red. The
lengths within the bars are the yearly values of vjm ; the by-year log ratio of the
constituent fraction to with respect to exports. Positive values indicate amounts
greater than exports, negative values indicate smaller values. The graph illustrates
the effect of corn exports on the remaining constituents of corn yield: the increase
in ethanol production is apparent. In 2005 and 2006, ethanol production is greater
than corn exports.

Discussion

The Dirichlet distribution is easy to simulate from directly or indirectly (see [15] and
Appendix 2-3). We fit the Dirichlet to the margins of the composition and generate
replicates from this fit; we prefer to simulate once and generate the m log-ratios from
the replicates. This is a motion towards investigating complete subcompositional
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dependence: these log-ratios can be generated for all subsets.

The alternative is to simulate from the Dirichlet margins 2m times for all subcom-
positions, or fit the Liouville directly. Either method requires more complex com-
putations: numeric or probabilistic integration to estimate parameters. Exploiting
simulations here — i.e. randomly generating the distributions for the statistics of
distance from independence for each of the subcompositions — accounts for sam-
pling error in the data (estimation of the parameters for the marginal Dirichlets) and
expands the class from which the replicates are drawn (beyond the joint Dirichlet).

We calculate the distance from independence via a norm on the probability integral
transformed data, via the copula. The resultant distance is invariant to increasing
transformations, like the log-ratio, equivalent on either the marginally Dirichlet repli-
cates or their transformed copies, and semi-parametric. This method is preferable
to tests of independence via null-correlation (à la Aitchison, see[12]) for multivariate
data in high dimensions: dependency in this setup is not restricted to an elliptical
shape.

The dependency statistics here treat time as unordered; as well, the illustrations
of pairwise competition via the log-ratio scatterplots do not model time-dependent
variability beyond inspection. The labels in Figures 3, 5, 6 suggest temporally
sensitive dependency patterns. This is an important point of departure for future
investigation. Characterizing competition among the outputs of corn yield will be
extremely important as corn producers approach naturally constrained production
ceilings.

Appendix

Appendix-1 Compositional Data and Subcompositions

Aitchison also defines yk+1 = 1 −
∑k

j yj; in this example
∑k

j yj = 1 since the total
corn yield is just the sum of the constituents. Thusly, here, (y1, ..., yk−1) ∈ Sk−1 —
the k − 1-dimensional simplex — versus the Aitchison method where y ∈ Sk.
In the original notation vj is the log of the relative fraction of constituent j to the
residual component of the basis, which is in the augmented simplex S∗k = {y, yk+1} =
{y : yj, (j = 1.., k+1),

∑
j yj = 1}: Sk and S∗k generate the same equivalence classes;

the augmentation S∗k is overdetermined. Here, however, the conditional distributions
of the components are not assumed equivalent — in fact the conditional dependence
appears to vary by choice of ‘residual’ m (see Figure 3), and merits component-wise
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inspection. This augmentation is, in fact, heuristically similar to subcompositional
independence, introduced in [14]. Complete subcompositional independence is inde-
pendence among each of the 2k − 1 subsets of the composition.

The log-ratio transformation, v(·), maps the k-dimensional simplex (Sk) to the k-
dimensional real plane (Rk); the logistic function (yj = evj

1+
P

j vj
) is the inverse func-

tion. Thus the proportions, on the simplex, are mapped to the real hyperplane.

Appendix-2 Dependency under Log-Ratio Transform

The variance of a composition under a log-transform is σjj = ωj + ωk+1 and the
covariances are σjl = ωk+1 as in [12].

A test of independence in this setting is with respect to a null hypothesis where Σv

— the covariance matrix of the transformed composition — is constrained to the
positive orthant and proportional to the units of the residual component. Aitchison
proposes a Wald type likelihood ratio test, where the test statistic is iteratively
estimated due to the constraints on the support of the parameter space (Σv ≥ 0
and proportional to the choice of yk+1).

In contrast with Aitchison’s likelihood ratio test for dependency in the composition,
on the data transformed to Rk, Rayens’ fits a Liouville distribution (a generaliza-
tion of the familiar Dirichlet distributions for proportions: see Equations 4 and 6)
to Dirichlet marginals by choice of dependency function g to the data on Sk. Both
approaches are iterative: the parameters of both the Liouville and Aitchison’s con-
strained log-normal must be estimated numerically (see [13] and [12] for illustration).

While Aitchison’s use of the well-known log-normal distribution leads directly to
independence testing via Wald’s test, Rayens’ approach for the Liouville distribu-
tion does not suggest a natural procedure for independence declaration. In fact,
any reasonable procedure must restrict h within a class (linear, say) and test on
introduced hyperparameters.

We choose to estimate dependency on log-ratio transformed data without assuming
a log-normal distribution. We estimate dependency in the composition via repli-
cates drawn from the Liouville family of distributions. In the Liouville family h is
an additional parameter of interest for estimation — the choice of h governs the
admissible dependence structure for y.

Our approach is to approximate the broader Liouville class by introducing additional
in marginally Dirichlet replicates.
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• The estimates α̂ = (α̂1, ..., α̂k) of α = (α1, ..., αk) are the sample means of the
composition data y; the sampling error is order n−1/2.

• Marginal Dirichlets can be generated directly from a version of Equation 4,
or from any positive distributions with a sum constraint. Gamma and Beta
distributions are candidates: [15] demonstrates a hierarchical approach with
hyperparameters.

• To approximate Liouville replicates:

(i) For/at each set of replicates yα̂,t, t = 1, ...T , pick at random 1 ≤ j, j′ ≤ k

(ii) Pick random ε ∈ [0, 1]

(iii) Reassign yj = yj + ε and yj′ = yj′ − ε

The neutrality of the Dirichlet is a weaker independence than the full subcomposi-
tional independence available in the generalized Liouville family ([13]). Our proce-
dure, modulo the randomization mechanism for ε, introduces broader dependency
in marginal Dirichlets without resorting to direct fitting of one Liouville distribution
or another (choice of h). As T → ∞ the replicates will yield — infinitely often —
non-neutral replicates.

While the logistic-normal class is closed to subcompositions, the dependency within
v j
m

is not invariant to choice of m. We exploit the log-ratio transformation to easily

investigate subcompositional dependency (here for subcompositions of dimension
3), not to test independence via the logistic normal distribution. This operates in
context with the generalized Liouville family, where the choice of h (see eq. (6)) is
akin to choosing the residual of the simplex.

Appendix-3 KS distance from Independence as Measure of
Association

The Kolmorogov-Smirnov distance is:

Dn = sup
t
|Fn(t)− F (t)| (7)

Asymptotic convergence of this distance to a Chi-Squared distribution under the
hypothesis v are generated with common distribution F is a well-known result [19].
A multivariate version of this statistic is
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Dn,k = sup
t
|Fn(t)− F (t)| (8)

For t = (t1, t2) the distance is a probability measure on Kendall’s distributions; Chi-
Square convergence does not hold [20]. Similar — multivariate — versions of the
Kolmorogov-Smirnov distance are investigated in ([24]) and ( [25]). The first paper
relies upon Rosenblatt’s iterative transformation of the data ([26]) by conditionally
independent cumulative distributions and the second requires Gaussian data; neither
paper offers distributional results for k > 2.

Let u = (u1, ..., uk), where each uj = Fj(vj), Fj the distribution function for vj. Let
the joint distribution for v be F (v). The copula for u is

C(u) = F (F1(v1), ..., Fk(vk)) (9)

the mapping from Ik to I; the shape of the joint distribution F fixed to the unit
hypercube Ik [21]. The Kolmogorov-Smirnov statistic (distance) for multivariate
independence can be written:

DΠ
n,k = sup

t
|Fn(t)−

∏
j

Fj(tj)|. (10)

Using (9), this is, now for v

DΠ
n,k = sup

u
|Cn(u)−

∏
j

uj|. (11)

by definition of multivariate independence, with Cn(·) a multivariate version of the
empirical copula:

Cn(u) =
#{t | t1 ≤ F−1

1 (u1), ..., tk ≤ F−1
k (uk)}

n
(12)

where #{·} is cardinality and F−1 is the inverse distribution function (see [22] and
[23]). This statistic is the L∞ distance between the empirical joint and independent
distributions with equivalent margins. Our procedure:

• Fit a Dirichlet distribution (i.e. estimate α̂ = (α̂1, ..., α̂k) for α = (α1, ..., αk))
to the composition data y.
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• Generate T Dirichlet replicates, parameter α̂, each of dimension n× k:
(yα̂,1, ...,yα,T ).

• Compute m = 1...k versions of Aitchison’s log-ratios on the replicates:
vα̂,1
m
...,vα̂,T

m

• For m = 1..k compute DΠ,1
n,k
m

, ..., DΠ,T
n,k
m

of

DΠ
n,k = sup

t
|Cn(uα)−

∏
j

u
α̂j

j |. (13)

where uα̂j = Fn,j(v
α̂j

j ) as a semi-parametric version of equation (10).

This yields a distribution for the statistic under an independence hypothesis among
the compositions — a direct result of the neutrality of the Dirichlet distribution.
Moreover, the m versions of the statistic, DΠ,1

n,k
m

, ..., DΠ,T
n,k
m

, are proxies for tests of

complete subcompositional independence. These statistics are calculated on the
log-ratios (v) of the replicates, and not the Dirichlet draws for this reason: picking
each of m components to serve as ‘residual’ in via the basis (x) or composition (y)
requires m estimates of α and m-fold random draws.

More recent work ([27] and [28]) relies upon distributional specification of the cop-
ula (Kendall’s type distributions, see [20] and [29]) and the resultant transformed
processes do not yield distributions for the multivariate Kolmorogov-Smirnov dis-
tance, do not specifically address dependency in the compositional data setting, and
illustrate only k = 2, 2 and 5.

In short we offer a test of dependence via the L∞ norm: this is the Kolmogorov-
Smirnov distance. This test of dependence is semi-parametric in that the replicates
are generated via α̂ but the distance from independence is calculated via the em-
pirical probability integral transform or the multivariate order statistics using the
empirical copula. The distance statistic DΠ

n,k is Euclidean, but on the probabil-
ity measure space — i.e. modulo the appropriate and flexible choice for the fixed
marginals of v.

We prefer this test for multivariate composition data, especially as k increases. For
large k the support of elliptical distributions (such as the normal and log normal)
— the setting for much analysis of compositional data — migrates into the extreme
tails.
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