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Abstract

Theil’s Index is a version of Shannon’s Entropy familiar to econometricians as a
measure of distributional irregularity or inequality. The standard version of Theil’s
index is misspecified and thus unsuitable for statistical use: the commonly used par-
titioning of across and within contributions of disjoint groups generates a misleading
interpretation of across group inequality. We explore an adjustment of Theil’s index,
in view of Shannon’s original axiomatization, and suggest a natural test statistic for
inequality across and within groups. We illustrate the method on a well known survey
on US household wealth and income.

1 Introduction

Theil’s index ([1]) is a measure of inequality — often defined as one of a class of functions
that are increasing on unequal arguments. Members of this class include the Lorenz curve
and Gini’s index (see [13]) in this class.
Theil’s index is a version of Shannon’s Entropy — familiar as a statistic that quantifies
the magnitude of information in a communication channel ([9]). In Shannon’s original
setup, the entropy measures the granularity of Markov Process, i.e. the distribution of
probability mass over the states of the process. More generally, Shannon’s entropy is a
function on a probability distribution, and thus a function on a simplex.
We adjust the Theil index by revisiting Shannon’s initial construction — in view of the
within and across group partitioned representation — and offer a test for inequality on the
term by term representation. We illustrate the methodology on a well known longitudinal
∗School of Industrial Engineering - Statistics Group; Georgia Institute of Technology, Atlanta, GA.
†Department of Public Policy, Duke University, Durham, NC.
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data set: the University of Michigan Health and Retirement Survey. We find statistically
significant inequality via the observed Theil indexes, both across and within black and
white race categories, on wealth and as well as income.

1.1 Theil’s Index

Thiel’s index, on a population of n total individuals, is commonly defined as:

T =
m∑

j=1

pj Rj logb Rj +
m∑

j=1

pj Rj Tj (1)

with

Tj = nj
−1
∑
i∈gj

rij logb rij , (2)

m disjoint groups, g1, ..., gm, each with nj members - n =
∑

j nj (see [7] and [14]). Each
of Rj is the ‘share’ of the underlying random variable — say X1, ..., Xn for a population
— apportioned to group j; pj is a probability of choosing group j, the relative cardinality
of group j; rij is the conditional share of X for individual i, given membership in group
gj . The logarithmic base is usually the natural number e; here we parameterize it as b.
Our affixes to the standard notation are: (i) group membership j to within group share
ri; and (ii) b > 0 as a parameter.

1.2 Shannon’s Entropy

Shannon defined the measure:

H(p1, ..., pn) = −
n∑

i=1

pi log pi, (3)

where pi is the probability of a system being in cell i of a ‘phase’ space, as a quantification
of the uncertainty of a realization from a discrete Markov process. Shannon’s idea was
to define a measure via the associated probabilities of occurrence of a Markov process X
with states X1, ..., Xn: P(X (ω) = Xi) = pi.
Shannon’s axioms for the measure H are: (i) H should be continuous in the pi’s; H should
be a monotonic increasing function of n if all of the states of X are equally likely; (iii) H
should be equivalent for repartitioning of probability space, i.e. for changes of measure,
in particular for conditioning. Shannon’s proof is that the axioms yield:
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H(p1, ..., pn) = −K
n∑

i=1

pi log pi, (4)

with K a constant. Shannon was informal (in fact he references Frechet, [15], for a ‘detailed
treatment’); the form of H is a direct consequence of the Chapman-Kolmogorov equations
for discrete Markov processes.
The imposition that the measure be consistent via conditioning yields the logarithmic
sum: it is Shannon’s insight to define the measure as the entropy of a set of probabilities
p = (p1, ..., pn) and to label H(X) as the entropy of the ’chance’ variable X. Thus
H(X) is a label for H(p) when X ∼ p. This distinction — that H is a function on the
probability simplex, and not on the space of X — is sublimated somewhat by Theil’s use
of Shannon’s measure on income ‘shares’ ([1], [2], and [5]) and, perhaps, fully suppressed
by later authors.
Notice that we discuss Theil’s index (and Shannon’s entropy) in the manner of sample
statistics - in particular, as U statistics, see [16] - by eliding a deeper conversation on
T as estimators (or estimators of functions of) population parameters. This is partly in
adherence to style, the index is commonly not discussed as a parameter estimate in the
econometrics literature, and partly substantive: our amendment to T can be derived solely
via arguments on an expected value of the sampled T , with minimal assumptions on an
underlying probability space.

1.3 Revisiting Theil à Shannon

This discrepancy is important: ‘information’, as defined by Shannon, is in units which
correspond to b: the choice of base for the logarithm and K the ‘normalizing’ constant.
The natural choice for Shannon’s measure is b = 2 — information ‘bits’ are units on the
base 2 ‘alphabet’. This ‘alphabet’ is the codification of the states of the random process
X , thus the measure H is in terms of units which are consonant to the natural granularity,
or specification, of the associated random process.
In Theil’s specification

T = n−1
n∑

i=1

ri log ri (5)

where ri is the ‘share’ of income for individual i, an individual i must then be a state of
a Markov process. The ‘income share’ ri, then, is not the value of an associated random
variable but must be a probability of occurrence. Theil suggests an income share ri can
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be interpreted as ‘the chance a random dollar [from the budget] will be spent on the ith
[person]’ [1].
In practice, i.e on data x = (x1, ..., xn), xi is set to be the income of individual i and

ri =
xi

x
(6)

is the fraction of income for individual i with respect to sample mean x. Theil’s construc-
tion suggests

H = −
n∑

i=1

xi

nx
logb

xi

nx
(7)

is used as Shannon’s entropy. This yields p = (p1, ..., pn) = ( x1
nx , ...,

xn
nx) = r/n on a

simplex, however, the interpretation of Theil’s index is inconsistent with Shannon’s design
of the measure on a probability space.
Since

logb0 t

logb1 t
= K, ∀t (8)

say, K can serve as a conversion between information units b0 and b1. This feature is elided
from Theil’s construction with the loss of Shannon’s constant.1. This vagueness — the
loss of the constant and the arbitrary specification of the logarithmic base — vitiates the
typical use of the index as a composition of across and within group inequalities. While
increasing, or decreasing K will not erase this phenomena, K is a placeholder for the
change of base and as such is analogous to choosing the correct b.

2 Partitioning T

Consider this rewrite of (1),

T =
∑
G

ng

n

Xg

X
logb

Xg

X
+
∑
G

Xg

X

1
ng

∑
g

Xig

Xg

logb
Xig

Xg

(9)

with: Xig the observed income for individual i, in group g; Xg, the sample mean for group
g; and

∑
G a sum over all groups and

∑
g a sum over group g. The first term on the right

hand side
1To be fair, Theil recognized the use of the constant but considered it arbitrary ([1])
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Across =
∑
G

nj

n

Xg

X
logb

Xg

X
(10)

is the measure of the across or between group inequality; the second term

Within =
∑
G

Xg

X

1
ng

∑
g

Xig

Xg

logb
Xig

Xg

(11)

the within group inequality.
Assume all incomes are positive and continuously distributed, the group and overall means
exist, and the observations are independent and identically distributed - modulo group
memberships g ∈ G, each of size ng, with n =

∑
G ng:

X ∼ µ <∞, X, µ > 0 (12)

and thus

X ∼ µg <∞, X, µg > 0 (13)

Inasmuch as Theil’s index is used to measure inter-group income disparity - see [14] and
[12] - the underlying parameters of interest must be the group and overall means: the
collection on G of µg and µ. We can interpret T in analogy to the well known Analysis of
Variance (ANOVA) setup for test of mean differences or treatment effects. In the ANOVA
setup we address the hypothesis of group mean difference via a partitioning of sums of
squares ; T is used to address group inequality differences via log sums or decomposed
entropies. See Sen [17] for an excellent discussion.
The ANOVA theory is extremely well developed (see [18] for example); theory for the
partitioning of T , via entropies by construction, is incomparably inferior. We believe this is
partly due to the disconnection between the statistical entropy/signal processing literature
and applied research using T . Additionally, and importantly, the weaker assumptions of
the T inequality setup - only that distributions exist, contrasted with the reliance on
normality for ANOVA - make statistical inference much more difficult . Recent work,
promisingly, begins to address this disconnect, see [19].
The deduction of the complete probability distribution for T is a non-trivial task —
however, we can assert some important characteristics about the decomposition of T using
only the linearity of the expectation, minimal assumptions on the finiteness and positivity
of incomes X and their exchangeability via our discussion of T as a U -statistic.

5



2.1 Within and Across

First, we assert that the expectation of the within term is greater than zero.

Theorem 2.1. E[Within] ≥ 0

Proof.

E[Within] = E[E[
∑
G

Xg

X

1
ng

∑
g

Xig

Xg

logb
Xig

Xg

|G = g]] (14)

which yields

E[Within] = E[
∑
G

1
ng

Xg

Xg

E[
1
X

∑
g

Xiglogb
Xig

Xg

|G = g]] (15)

and then, by conditioning on G = g

E[Within] = E[
∑
G

1
Xng

∑
g

E[Xiglogb
Xig

Xg

|G = g]] (16)

= E[
∑
G

1
Xng

E[
∑

g

Xiglogb
Xig

Xg

]] (17)

≥ E[
∑
G

1
Xng

E[ngXglogb
ngXg

ngXg

]] (18)

≥ E[
∑
G

1
Xng

E[0]] = 0 (19)

with (18) because of the log-sum inequality.

This illustrates that, for any - arbitrary - choice of log base b, the expectation of the within
term of T is strictly positive as it is a sum of strictly positive numbers.
Now for the expectation of the across term.

For conciseness let: αg = ng

n
Xg

X
, these are ratios of group income to overall income; and

βb
g = logb

Xg

X
, the log ratios of group mean income to overall mean income.

We continue with the claim that the expectation of the across term is bounded above
by the expectation of the sum of the log ratios of group mean incomes to overall mean
incomes, βb

g
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Theorem 2.2. E[Across] ≤ E[
∑

G β
b
g]

Proof.
Write:

E[Across] = E[
∑
G

ng

n

Xg

X
logb

Xg

X
] = E[

∑
G

αg β
b
g] (20)

and note that
∑

G αg = 1, and αg ≥ 0, by assumption, ∀g. Then,

E[Across] = E[
∑
G

αg β
b
g] (21)

≤ E[
∑
G

αg

∑
G

βb
g] = E[1 ·

∑
G

βb
g] (22)

= E[
∑
G

βb
g] (23)

Thus the across term of T (see 1, 9, 10 and 11 - above) is bounded above by E[
∑

g β
b
g].

Illustrations of this bound (as a function of b - the choice of log base - and xg, g ∈ G, the
collection of group (sample) means) highlight a disparate effect on T when it is partitioned
as across and within group inequalities.
Notice that for b < 1, βb

g < 1 decrease the across term; for b < 1 βb
g < 1 increase the across

term. Note that βb
g < 1 for groups having less than the population average. See Figure 1.

We call a “singular” collection G one where Xg = X, ∀g. For these collections - where all
groups have the same average - βb

g = 1, ∀g, trivially.

Consider, without loss of generality, any non-singular collection βb
g, ordered increasingly:

setting b marks the “gradient”, say, for the sum of the collection βb
g - or the rate of descent

(ascent) of (23). Our remark is that b can be chosen such that E[
∑

G β
b
g] < 0.

We illustrate this via a brief lemma:

Lemma 2.3. For any non-singular collection of groups, G, ordered without loss of gener-
ality, ∃ t such that

βb
gt
< 0 < βb

gt+1
(24)
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Proof.
To see this, take b > 1 and take any X, X > 0, by the minimal assumptions in (12) and
(13), draw and order m samples X1, ...Xm. With X = m−1

∑
Xi, ∃ t such that

Xt < X < Xt+1 (25)

since otherwise X(s) > X, ∀ s or X(s) < X, ∀ s, in obvious contradiction. Then (25)
implies (26), below

Xgt

X
< 1 <

Xgt+1

X
(26)

and thus (24), in our notation, when b > 1.
We get the proposition for b < 1 by realizing that the groups may be ordered without loss
of generality.

For b < 1, terms βb
gs
, s ≤ t are positive and βb

gs
, s > t are negative contributions to

the across term 23; for b > 1 the change is from negative to positive. A choice of b fixes
(arbitrarily) the particular t, modulo the underlying distribution of the collection Xg and
(likewise) βb

g.
Consider these propositions:

Theorem 2.4.

(I)
b ≤ min

G
(Xg/X) =⇒ E(

∑
G

βb
g) ≥ 0 (27)

(II)
b ≥ max

G
(Xg/X) =⇒ E(

∑
G

βb
g) ≤ 0 (28)

with equality, in both conclusions, for singular collections.
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Figure 1: Illustration of βg vs. xg for log base b < 1 and b > 1. The contribution to
the across term of Theil’s index - T , equation (10), is concave up or down by choice of
b. Consider a collection of groups g1, ..., gm ordered by group mean xg, without loss of
generality. The panels illustrate the magnitude of the contribution to the expectation in
equation (23) for a collection of groups with average incomes (uniformly, say) distributed
within (two, say) multiples of the population average. Setting b sets the inflection for
increasing/decreasing (or decreasing/increasing) contributions to the across term. A choice
of b dictates the expectation of the across part of Theil’s index.

Proof.

Take b < 1, case (I) and recall notation βb
g = logb

Xg

X
.

Fix b ≤ minG(Xg/X), thus b ≤ X1/X.

Notice as well
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1 ≥ βb
g1
> βb

g2
> · · · > βb

gt
> 0 > βb

gt+1
> · · · > βb

gm
(29)

by lemma 2.3.
Then rewrite (23)

E[
∑
G

βb
g] = E[

∑
G

logb
Xg

X
] (30)

= E[logb(
∏

GXg

X
m )] (31)

by property of the logarithm.
By the Cauchy-Schwarz inequality,

m

√∏
G

Xg ≤ X (32)

which implies ∏
G

Xg ≤ X
m (33)

Thus, recalling b < 1 and the property of the logarithm (see Figure 1).

logb(
∏

GXg

X
b

) ≥ 0 (34)

so

E[
∑
G

βb
g] = E[logb(

∏
GXg

X
b

)] ≥ 0 (35)

For case (II), fix b ≥ maxG(Xg/X), thus b > 1.
Notice, again via lemma 2.3

1 ≤ βb
gm

< βb
gm−1

< · · · < βb
gt+1 < 0 < βb

gt
< · · · < βb

g1
(36)

Since b > 1 rewrite
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logb(
∏

GXg

X
b

) ≤ 0 (37)

and

E[
∑
G

βb
g] = E[logb(

∏
GXg

X
b

)] ≤ 0 (38)

This demonstrates that the bound for the expected value of the across partition of Theil’s
index can be made positive or negative, arbitrarily, depending upon choice of log base b.
Theil himself is indeterminate on the importance of b; in [4] he mentions it in passing as a
normalizing constant and suggests use of the natural number e. Later authors follow this
convention.
This oversight is a problem when the index is used to decompose or aggregate inequality
over several groups. With just one group, say - as T ∈ [0, logb(n)] - T is bounded by logbn.
If b = n then the index is on [0, 1], b can incautiously be considered a scaling parameter as
in equation (8) above. Recent work, see [20] and [21], investigating statistical properties
of the non-decomposed index T ignores - without loss - the role of this scaling parameter.
The value of b is non-ignorable, however, when we desire inference on inter-group differ-
ences in inequality.

3 A T -test for inequality

Consider a hypothesis testing setup for the inequality of the income distribution in a popu-
lation: for any b > 0 the expected value of Theil’s index T is zero. Note that this the value
of T for a uniform distribution of incomes, and notice that the incomes are exchangeable in
the sense that T is equivalent for equal deviations from equality/uniformity at the upper
and lower ends of the distribution.
In this setup we can treat the observed value of T , as a test statistic for the hypothesis of
inequality:

H0 : T = 0
vs.

Ha : T > 0
(39)
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with T the true (or population) value of Theil’s index.
Martinez-Camblor (see [21] suggest that the observed value, or estimator, T is asymptot-
ically normal about T . Using this finding yields

p− value = PH0:T =0,b

(
Z >

T

s.e.(T )

)
(40)

with Z a standard normal Gaussian random variable and s.e.(T̂ ) the standard error of the
estimator, estimated in [21] via bootstrapping.
This setup is insufficient for partitioned versions of the index. Consider the partitioning
T = Ta +Tw into across and within terms under an arbitrary b > 0: we have demonstrated
that values of b exist where E(Ta) < 0 but E(Tw) > 0, even under a null hypothesis of
H0 : T = 0.
To see this simply recognize that the hypothesis H0 : T = 0 is composite over the set
{Ta = −Tb} with Ta = 0 = Tb only a special case. This is to say that overall income
inequality is zero for all cases where across group inequality is opposite to within group
inequality. We can say that overall income inequality is zero when across and within group
inequalities are zero, but not the converse.
We suggest simultaneous testing of across and within group inequality:

H0 : Ta = 0 = Tw
vs.

Ha : Ta > 0; Tw 6= 0
(41)

Given an appropriate b, this is

H0 : Ta = 0 = Tw
vs.

Ha : Ta > 0; Tw > 0
(42)

The significance level of the test can be set via a Bonferroni type correction for multiple
hypothesis, or more conservatively:

p− value = max
{

PH0:Ta=0,b

(
Z >

Ta

s.e.(Ta)

)
,PH0:Tw=0,b

(
Z >

Tw

s.e.(Tw)

)}
(43)
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with Z a standard normal Gaussian random variable, as before, by Gaussianity of linear
transforms. The standard errors can be estimated separately, again via bootstrap, for each
term: s.e.(Ta), s.e.(Tw). Note that the standard error estimated without decomposition,
i.e. as s.e.(T ) on T , yields an upper bound for the variance of decomposition Ta + Tw; it
is unclear if the across and within terms are (even linearly) independent under reasonable
assumptions on the underlying incomes X and grouping G.
We remark that our adjustment of b does not suggest that across and within terms are
equal under the alternative - in fact Tw often dominates Taunder our recommendation -
but the expectation of both is known and specified under the null hypothesis of inequality
and both are restricted non-negative in consonance with Theil’s and Shannon’s design.

4 Illustration

We offer an illustration using the University of Michigan’s Health and Retirement Survey
(HRS) data [22]. The data are a battery of responses from a well known longitudinal
study; Elemech (see [12]) in particular investigates intra-group inequality for white, black
and latino Americans.
Using data from the 2000, 2002, 2004, 2006 and 2008 waves of the survey we calculate the
Theil indexes on wealth and income household totals, grouping on ethnicity. We chose
to ignore Hispanic/Latino classification for this illustration. This grouping yielded 19580,
18167, 20134, 18469 and 724 observations, by increasing year.2 We used responses to total
net worth and total income.
We case-wise deleted values from the data that were less than zero - by assumption here and
elsewhere Theil’s index is calculated on positive quantities. Additionally, after removing
cases with negative values in either wealth or income, we shifted all responses by one. This
allowed us to calculate the index on all remaining values - preventing infinite logarithms of
zero. We point out that these two modifications of the data may have an appreciable effect
on the measurement of inequality: the deletion of negative values - in particular wealth
- may affect the across and within measurement of black inequality, and the difference -
measured via logarithm - between zero and one may be also obscure the effect of inter vs.
intra group inequality.

2The vast majority of responses to ethnic category - approximately 17000 - in the 2008 data were missing.
We case-wise deleted the non-responses; the indexes are calculated from the few remaining values.
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Figure 2: Illustration of Theil’s index calculated on wealth - left hand column - and
income - right hand column - using the University of Michigan’s Health and Retirement
Survey (HRS) data: 2000, 2002, 2004, 2006, and 2008. The upper row is the across term,
the lower row is the within term. Both terms are fixed by log base b = min(xg/x) the
ratio of the poorer (black) group sample mean to the overall mean. The small number
of observations in 2008 (n=724) inflate the (estimate of) standard error - via ordinary
bootstrap. Across group inequality appears to be stable or decreasing from 2000-2008;
within group inequality appears to be increasing from 2000-2006. Confidence bars are at
95 percent significance.

Figure 2 plots the across and within observed Theil indexes, by year. The small number of
data in 2008 inflates the estimate of the standard error - obvious from the illustration by
the wider confidence bars around the estimate. In general the observed estimate of across
group inequality from 2000-2008 appears to be decreasing for both wealth and income.
However - in the lower panel of figure 2 - the within group inequality sum appears to
(mainly) increase from 2000-2008. The 2008 estimate may be unreliable.
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Year Across Within
2000 12.2 19.8
2002 7 22.1
2004 10 30.8
2006 4.0 13.9
2008 .0034 5.45

Table 1: Test statistics, Zo, for Ta, Theil’s index for calculated for income on the HRS data
from 2000-2008. Compare each with a quantile from the standard normal distribution -
for either of H0 : Ta, Tw = 0, Zo ≥ 1.64 implies significance at the .05 level.

Year Across Within
2000 25 23.6
2002 15 18.6
2004 9.4 13.7
2006 20.4 22.16
2008 2.97 7.38

Table 2: Test statistics Zo, for Tw, Theil’s index for calculated for wealth on the HRS data
from 2000-2008. Compare each with a quantile from the standard normal distribution -
for either of H0 : Ta, Tw = 0, Zo ≥ 1.64 implies significance at the .05 level.

Across group wealth and income inequality appears to be decreasing from 2000-2008, yet
across group wealth inequality seems to be noticeably greater than income inequality.
Over the same period within group inequality, via both wealth and income, appears to be
increasing. This agrees with contemporary research (see [14] and [12]). While differences
across groups appear to be lessening - within racial group stratification is worsening. As
well, it is important to notice that within group income disparity - the lower right panel
in figure 2 - is larger in magnitude and change.

5 Discussion

We have illustrated a straightforward explanation for large differences in magnitude of
observed values for partitions of Theil’s index of inequality. The issue is related to the loss
of the positive constant K in Theil’s version of Shannon’s entropy. K accounts for the
choice of logarithmic base b. In Shannon’s paper the natural choice for b is 2 for a binary
variable.
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One issue is the indistinguishability between the random variable, any sigma algebra (set
of events) and associated probabilities. In fact, while Shannon’s original measure was
derived as function on a probability space and the log arose from first principles, there is
an arbitrariness that can be exploited by choosing the logarithmic basis. Shannon himself
states (see [9]):

The choice of a logarithmic base corresponds to the choice of a unit for mea-
suring information.

The choice of log base is analogous to the minimal distance measure on the probability
space: in Shannon’s seminal paper the basic distance is Hamming or the number of unequal
positions in equal length strings3. In Shannon’s setup (for telecommunication), then, base
2 is the appropriate distance measure - for binary strings.
Logs arrive naturally as the limits in binomial exponentiation and algorithmically as tools
for transforming multiplication into addition and for idempotent differentiation (and inte-
gration) in calculus [10]. In this setting the use of the logarithm allows for independence
- i.e. factorization of probability distribution - to be additive.
We illustrate the inequality of the partitioning of Theil’s index as an artifact of choice
of logarithmic base b. In light of this demonstration we suggest conscious fixing of the
logarithmic index to guarantee both terms - across and within - are positive. This addi-
tional specification is consonant with the design of the index as an increasing measure of
distance from equality - or uniformity of income distribution - with a maximum at logbn.
It is unclear if the across and within partitions are independent under broad distributional
assumptions for incomes. As well, in most cases n is much bigger than the min or max
beta - usually x are in dollars, not millions of dollars or some other fraction. We make
our comments about the partitioning of the index using the least restrictive assumptions
on the underlying probability distribution of the incomes and groupings.
Using our recommendation then, the b of the index is the percent income of the poorest
or richest group - and then the bound is the geometric mean of the entire population if
everyone’s income was that of the poorest or richest group.4

In this setting - with only the broadest probabilistic/distributional assumptions - we sug-
gest a simple test for each of the terms of the index via their asymptotic normality in
their role as estimators. In this way standard errors can be easily and quickly calculated

3Minimal in the sense of minimal complete: the minimal distance which distinguishes unique elements.
4Lastly, there is support in the literature for this change of logarithmic base technique. Rocke and

Durbin investigate the started log (adding a constant in the log argument) and log-linear hybridization (log
above a cutoff and linear below) [8] as instances of what are called generalized logarithm ) transformations.
And of course Box-Cox [6] and Tukey [11] have outlined general families of transforms.
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via ordinary bootstrap and the overall hypothesis test of distributional inequality can be
conservatively considered as the join of both individual tests.
We believe our approach introduces a necessary deeper inspection of the statistical proper-
ties of Theil’s index - in particular - and formal hypothesis testing procedures on inequal-
ity. We comment that our paper places Theil’s contribution, in particular, in a statistical
econometric context - and more generally suggests a greater role for statistical analysis on
the wider class of indices of inequality.
Consider the following (nested) tests, just via Theil’s index:

All groups are equal This is equivalent to the ordinary ANOVA setup for equality of
group means Xg not via Theil’s log ratios.

Each group is equally unequal This is to say that Tg = T ∀g ∈ G. A natural test
statistic is Ta the weighted sum of the across group inequalities.

Each group contributes equally to inequality measure This is more general ver-
sion of the first hypothesis setup where groupwise inequality is weighted by group
size. A possible test statistic is

∑
G

ng

n

Xg

X
logb(

Xg

X
)

which should converge to a constant.

Inequality across groups is equivalent to inequality within groups Under this hy-
pothesis, this ratio

∑
G

ng

n

Xg

X
logb

Xg

X
/
∑
G

Xg

X

1
ng

∑
g

Xig

Xg

logb
Xig

Xg

is the ratio of two positive quantities: for well chosen b the ratio is one.
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