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Abstract   We use individual transferable quota (ITQ) consolidation in New 
Zealand’s commercial fishing to illustrate three different methods of measuring con-
solidation: the Herfindahl Hirschman Index (HHI), conditional Gini Coefficients, and 
conditional Lorenz curves. The Lorenz curve allows for conditional specification over 
stratified groupings, which yields straightforward in terpretation and illustration of 
overall inequality for more nuanced interpretations.
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Introduction 

Market-based management approaches, such as individual transferrable quotas (ITQs) and 
catch share programs, are now well established as an important tool for fisheries managers. 
At the simplest level, this approach divides the total allowable catch (TAC) among fishers, 
allowing them to buy and sell this catching right so that the most efficient distribution of 
the TAC among fishers is achieved. Discussion of ITQs can be found in the literature as 
early as the 1950s (Gordon 1954; Scott 1955), but emerged as a viable policy tool in the 
1980s and 1990s as New Zealand (Dewees 1989; Crothers 1994; Annala 1996) and Iceland 
(Palsson and Helgason 1995; Eythorsson 2000) adopted national ITQ programs, and other 
nations, such as the United States and Canada, adopted regional single-species programs 
(Gauvin, Ward, and Burgess 1994; Buck 1995; Sanders and Beinssen 1997). 
 In spite of their increasing use, ITQs have remained controversial. One of the pri-
mary critiques of ITQs is that they consolidate ownership of catching rights among a few 
large fishers, rather the catching rights being spread among many fishers with smaller 
catching capacity, as is often seen in more traditional regulatory approaches. Consolida-
tion attracts academic attention for three distinct reasons: market power, social welfare 
implications, and governance issues.  
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Market Power

Of direct interest to economists is the issue of market power (market concentration and 
industrial concentration).  These issues are well documented in the broader economic 
literature (Bain 1956; Curry and George 1983; Weiss 1989). As applied to fisheries, the 
issue is: if ownership of ITQs becomes concentrated among a few players, conditions 
are favorable for an oligopoly to exert excessive influence in the market. This could be 
manifested in higher prices paid by consumers or in lower prices the processing compa-
nies (which in some fisheries can own a large portion the ITQs) pay to fishers. One study 
found that the welfare gains associated with ITQs “are reduced and potentially complete-
ly offset” in an imperfect market, such as those influenced by consolidation (McEnvoy 
et al. 2009, p. 482).  However, research on market power is mixed (Adelaja, Menzo, and 
McCay 1998; McEnvoy et al. 2009) and modeling suggests that market concentration is 
unlikely to occur (Anderson 1991). Since a primary motivation for ITQ regulation is en-
couraging market efficiency, and there is some evidence that consolidation is a precursor 
condition to market power issues, measurement of concentration is an issue worth analyz-
ing, as market and industrial concentration can undermine these objectives.

Social Welfare

ITQs as a social welfare issue are most discussed in the broader fisheries management lit-
erature.  The critique is that ITQs can shift wealth generated by a fishery and the control 
of a fishery away from fishers embedded in a local community (Palsson and Helgason 
1995) potentially resulting in unemployment (Squires, Kirkley and Tisdell 1995), barriers 
to entry for new fishers (Palsson and Helgarson 1995), and damage to existing institutions 
(McCay 2004).
 More recently, the issue of “leasing out” ITQs (one entity owning the catching right, 
while others lease the right to catch it) became associated with consolidation (Stewart and 
Callagher 2011). As ownership of ITQs concentrates, the practice of leasing grows. Crit-
ics argue that rapidly increasing lease prices consume too large a proportion of ex-vessel 
catch prices, thus illustrating “a market failure preventing...[the] efficiencies that are pre-
sumed to go hand in hand with ITQ systems”(Pinkerton and Edwards 2010, p. 1110).1  

Governance

A more recent concern is the potential for concentration of ITQs undermining fishery 
self-governance efforts. Within the common-pool resource management literature, there is 
support of the proposition that ITQs can provide the basis for self-governing regimes (Ar-
nason 2007). However, this presupposes that ITQ owners are also fishers, in which case the 
long-term profit incentive to manage a fishery sustainably directly impacts those who are 
actively on the water fishing. Case study work in New Zealand shows that leasing decouples 
this relationship so that ITQ owners most acutely feel the incentives, while on-the-water 
fishers who are dependent on leasing do not perceive their direct benefit (Yandle 2008). This, 
in turn, undermines the potential for ITQs to form the basis of self-management regimes, as 
ITQ owner and the fisher respond to different incentive structures and do not optimally 
work together in self-management efforts. Since concentration is associated with increased 
leasing, understanding concentration is an important first step towards assessing the degree 
to which this dynamic may threaten fishery self-governance (or co-management) efforts. 

1 For a complete discussion of the strengths and weaknesses of this line of research see: Pinkerton and Edwards 
2009, 2010; Turris 2010.)
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Analysis

Because of this suite of concerns (market power, social welfare, governance), consider-
able effort is now invested in devising regulatory structures that limit the degree to which 
ITQ ownership can consolidate. Examples include: restrictions on initial allocation be-
yond 10% of TAC (Gauvin, Ward, and Burgess 1994); caps on the maximum amount of 
quota a single entity may own (van Putten and Gardner 2010); linking quota to vessel 
size classes (Carothers, Lew, and Sepez 2010); limits on corporate ownership (Caroth-
ers, Lew, and Sepez 2010); limits on transferability of quota in the program’s initial years 
(Casey et al. 1995); allowing pooling of quota (Abbott, Garber-Yonts, and Wilen 2010), 
etc. The key point is that these issues are an important critique of ITQ management that 
is resulting in increased regulation that limits the ability of ITQs to function as originally 
intended—a mechanism to encourage economically efficient allocation of TAC. 
 In sum, consolidation is at the root of three key critiques of ITQs: market power, so-
cial welfare, and governance. As a result, considerable academic research and regulatory 
effort is directed to understanding and addressing these issues. With so much effort spent 
on the effects of consolidation, it is important to ensure that the methods used to measure 
consolidation are as valid as possible. This is a key first step to better understand the poli-
cy dilemmas posed by issues such as market power, social welfare, and governance. This 
article, while motivated by these issues, focuses on the first step of identifying a robust 
method for measuring consolidation. Consolidation has emerged as a key issue within 
ITQ management, and, as such, it is important to identify robust measures of consolida-
tion in order to address the key policy problems raised by this issue.
 We use the well-established case of consolidation in New Zealand ITQ ownership 
with conditional versions of the well-known lorenz curves. This is a well-established 
method of measuring inequality that is (to the best of our knowledge) not yet used in 
fisheries economics. We exploit this relatively new version of the Lorenz curves because 
it effectively and directly incorporates discrete covariate effects (i.e., stratification across 
markets, locations, or time) and offers familiar and immediate estimation of statistical 
error. This approach allows a more nuanced assessment than the standard unconditional 
point estimates of (only) univariate measures of distributional inequality. Below, we place 
the two dominant means of measuring consolidation in fisheries economics—the Gini 
Coefficient and the Herfindahl Hirschman Index (HHI)—on similar footing via the em-
pirical cumulative distribution function (ecdf). This perspective naturally, and properly, 
introduces the empirical lorenz curve as a version of ecdf, and as the engine for the Gini, 
HHI, and other indexes. This is followed by an introduction of our case and the associ-
ated data. We examine consolidation using all three methods (Lorenz, Gini, and HHI) in 
the New Zealand commercial fishing industry. Finally, we interpret and compare results. 

Methods Review 

Empirical studies of distributional inequality typically, though not always explicitly, rely 
upon a list of sorted data—quantities of ‘goods’ held by persons or entities— joined with 
associated observed proportions (Gauven, Ward, and Burgess 1994; Scherer 1970). This 
is simply the em pirical distribution function (ecdf) or the observed cumulative probability 
distribution. The straightforward method of measuring distributional inequality is to com-
pute this estimate of the ecdf and consider competing measures of inequality as versions 
of the ecdf, for example the Herfindahl or Gini index. Whether or not the connection to 
the ecdf is explicit (rare) or implicit (more common), the diagnostic measure of inequal-
ity is a scalar, or univariate, that increases as the underlying distribution of the sample is 
more 'unequal;' i.e., further from uniformity. 
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 In brief notation, the data usually considered y = (y1,...,yn)  are typically non-negative 
values; sublimate here an underlying probability model, which may generate the data 
and consider all of the distributional information in y held by the empirical cumulative 
distribu tion function (ecdf):
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F y 1                                                        (1)

Notice that the ecdf in equation (1) generates, at least, n quantiles: 

   1
( )( ) ,n p nF p y                                                       (2) 

with y()  the sorted data, the pth quantile is just the p·n th largest observation. 
 We focus on the representation of the ecdf as arisen from the empirical process. We 
suppress parametric model specification and view the data only as a sequence of identi-
cally distributed, though not necessarily independent, observations (Hoeffding 1948). In 
fact we expect the data are quite dependent as the consideration of inequality implies a 
constrained sum or simplexed model (Abayomi, Luo, and Thomas 2010). This is to say 
that we sublimate any discussion of an underlying parametric/distributional model for the 
data and consider the data only as arrivals from some null model, and also consider the 
Lorenz, Gini, and HHI as unbiased (i.e., ‘U’) statistics. 

Lorenz Curves 

The lorenz curve is simply a list of population proportions—numbers between 0 and 
1—joined to the list of proportions of ‘goods:’ 
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the observed values of y. 
 The connection between the Lorenz curve (Lorenz 1905) and the ecdf is im-
mediate; notice that the Lorenz curve, equation (3) is just the ordinary distribution 
function at an interior point (via its inverse) rescaled by its total over its domain, since 
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See figure 1 for an illustration of these curves under distributional assumptions. Notice 
also that the Lorenz curve ‘lives’ in the region in the lower right triangle of figure 1(a). 
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Gini Coefficient 

The empirical Gini coefficient is a function from an observed distribution to a scalar on 
the unit interval. The Gini returns the scaled “concentration” of a distribution defined as 
the ratio of observed distance from equality to the maximum distance from equality. This 
distance is just the area between the 45° line Lorenz curve for a uniform distribution and 
the observed lorenz curve divided by 1/2—the area between a uniform lorenz curve and 
a singular Lorenz curve—on the space of the Lorenz curve, the unit square [0,1] × [0,1]. 
The Gini coefficient is 1, its maximum, on a singular distribution—one where all of the 
‘good’ in a population is held by one person. The minimum, 0, is returned on a uniform 
distribution—one where everyone in a population holds an equal amount of the good. 
 There are many ways to calculate Gini’s index on a sample of ‘goods’ y; the coef-
ficient is also defined as a function of the mean deviation, for example. It is illustrative 
to write it as a function of the lorenz curve—this illustrates the connection between the 
univariate Gini, the lorenz curve, and the observed distribution function as a measure 
of inequality which was recognized by Gini in his original paper (Gini 1914, 2005). The 
popular Gini coefficient is but one of several measures of inequality and contributions to 
statistical inference from Corrado Gini (Forcina and Giorgi 2005).
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Figure 1.  Illustrations of lorenz Curves on Parametric distributional Models

Note: The 45° line is the Lorenz curve on a uniform distribution; the right angle is the Dirac distribution, 
completely concentrated at one point. Example distributions listed in the legend are in order of distributional 
‘inequality.’ The uniform distribution is perfectly equal, the Dirac perfectly unequal, the normal distributions 
are in order of increasing variance, and the chi-squared distribution is right-skewed. The Gini index is the area 
between the 45° line—the Lorenz curve for an equal distribution—and the particular Lorenz curve divided by 
1/2, the max area of concentration. 
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 The Gini coefficient is the area just above the Lorenz curve as the distance between 
the equality of identical data and the inequality observed in the (usually) non-identical 
data. Figure 1 illustrates prototypical lorenz curves in contrast with generating probabil-
ity distri butions. In this article we suppress consideration of those distributional models; 
we consider only those in figure 1(a) as models.

 
Herfindahl Hirschman Index 

The Hirschman/Hirschman-Herfindahl Index, commonly called the Herfindahl index 
(Hirschman 1964) is defined on data y as: 
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This can be immediately rewritten as:
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since it doesn’t matter whether the data are sorted, and then again immediately: 
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where n* = n ^ 50 is the minimum of the sample size and fifty. 
 There has been some expression of preference for the HHI over to the Gini/Lorenz 
curve in the literature as an ‘unbiased’ diagnostic for concentration (Gauvin, Ward, and Bur-
gess 1994; Scherer 1970). This preference is specious in the statistical sense of ‘biasedness,’ 
as each are functions of ecdf and these estimates (Hn or Gn) on sample data y can be expect-
ed to converge to its true value as the sample size increases (Martinez-Camblor 2007).
 The HHI has been noted to ‘inflate’ diagnosis of concentration for samples where 
n is low and the range y(c·n) – y(1) between fractions of the data (c = 1/n,...,n/n) is small 
(Scherer 1970). Generally, since H is a function on 2

1[0,1]n
i   and G is on 1[0,1],n

i   range 
(H) ≤ range (G) on identical samples y since the squares of numbers on the unit interval 
are lesser; squares of numbers between zero and one decrease. 
 A major preference for the Gini coefficient is its direct relationship to the entire 
Lorenz curve; the HHI can be seen as a thresholded (choosing a cutoff is thresholding) 
version on the last 50 arbitrary, sorted observations. The Gini/lorenz duality with the ecdf 
further yields a conditional approach, which is not straightforward on the thresholded sum 
of squared shares used in the HHI. Lastly, especially on data with many observations, we 
expect to find striking differences between the Gini/Lorenz approach and the HHI, with 
equally divergent implications for policymaking. 

New Zealand Commercial Fishing: Setting and Data 

Globally, New Zealand is one of the most well-known examples of an ITQ regime. This 
system regulates commercial fishing within New Zealand’s EEZ (roughly 1.2 million 
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square nautical miles or approximately 15 times their land mass), encompassing 130 
species and 422,000 tonnes landed in the 2008–2009 fishing year, accounting for 1.49 
billion $NZ in exports in 2010 (NZSIC 2011). The industry is comprised of three dif-
ferent fisheries: deepwater, inshore, and highly migratory species (HMS). Top species 
in the deepwater fishery are orange roughy, squid, and hake, and the sector is dominated 
by a few vertically integrated harvesting companies. Meanwhile, the commercial inshore 
industry harvests a diversity of species, and the sector is composed of a mixture on inde-
pendent small-scale fishers who sell their catch to vertically integrated companies and by 
boats owned by these companies with hired crews. As the name suggests, HMS are fish 
that migrate great distances across the Pacific such as tuna, swordfish, and certain shark 
species. HMS may be fished by either inshore or deepwater fleets and for fisheries man-
agement purposes are addressed separately (Starr 2011). 
 When New Zealand adopted its ITQ regime in 1986, it was one of the first in the 
world to adopt a national ITQ regime, and it did so with the objective of implementing a 
system that was as closely aligned as possible with a market-based model. (Detailed his-
tories and analyses of New Zealand’s ITQ system can be found in Annala 1996; Batstone 
and Sharp 1999; Crothers 1994; Yandle and Dewees 2003). At the same time that ITQs 
were introduced, subsides were removed and minimal restrictions were placed on quota 
ownership (with the exception of a few specific fisheries). Thus, New Zealand provides 
an ideal case for examining ITQ ownership patterns. 

Existing Evidence on Consolidation in New Zealand 

Research on consolidation in the New Zealand fishing industry is significant, with prelim-
inary evidence appearing in the 1990s (Bevin et al. 1990; Dewees 1998). Consolidation 
was first statistically documented in 2000, when a study noting that it was occurring in all 
sectors except deepwater was published. This study also framed this as a positive, noting 
that [ITQs] “appear to be living up to the promise of rationalization, albeit at a somewhat 
more sedate pace in aggregate than some might have imagined in enthusiasm for the 
concept” (Connor 2000, p. 278). Subsequent studies have examined the effects of ITQs 
on small-scale fishers (Stewart and Walshe 2008; Stewart, Walshe, and Moodie 2006), 
and documented a fully functioning market in which profits were increasing due to ratio-
nalization/consolidation (Newell, Sanchirico, and Kerr 2005). More recent studies have 
confirmed that consolidation of catching rights has occurred to varying degrees in both 
inshore and deepwater fisheries during the earlier years of management (Yandle and De-
wees 2008). Furthermore, consolidation of ITQs is shown to occur in all sectors in recent 
years; while recent annual catch entitlement (ACE) ownership patterns show consolida-
tion for deepwater and mid-water species, but lower levels of consolidation in inshore 
fisheries (Stewart and Callagher 2011).

Data 

As discussed above, New Zealand commercial fishing is well-studied, with clear evi dence 
of consolidation, and provides an excellent case for examining the relative merits of dif-
ferent measures of inequality. After providing a description of the data used in this study, 
we pro ceed to this analysis. This study partitions ITQ management into two readily avail-
able timeframes: 1987–1990 and 2007–2009. Using these two timeframes allowed us to 
examine ownership patterns at the start of ITQs and during the most recent years available 
when this study began. by using multiple years in each partition, we were able to mitigate 
any single-year anomalies that may have occurred (but we were unaware of). Raw data for 
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the 2007– 2009 fishing years was purchased directly from FishServe,2 while data for 1987–
1990 was obtained from Clement and Associates in 1999. This data set was previously 
used in an unpublished analysis that the company conducted on quota ownership patterns 
during the first few years of quota management (Clement and Associates 1996).

Methods 

In order to ensure that these two datasets were combined appropriately and could be used 
in this analysis, a few conversions were made. First, in the 1987–1990 timeframe, quota 
allocation was measured in weight, while in 2007–2009 it was measured in quota shares.3

 

Quota weight equivalent (QWE) is the total allowable commercial catch (TACC) for 
each species and year divided by 10,000 (proportion of total allowable catch). Data from 
1987–1990 were converted into quota shares. To ensure that concentration was not artifi-
cially deflated and to adjust for clear cases of a single entity holding quota under multiple 
identities (e.g., identities with similar names and identical mailing addresses), we also 
updated the dataset to reflect when fishing companies merged.4

 
Finally, we removed all 

quota shares associated with area codes 10 from the analysis, since these areas exist only 
for administrative purposes.

Conditional Lorenz Curves 

Following the work of Aaberge, Bjerve, and Doksum (2005), we look to express the 
contributions to and differences in inequality in the data—the quota shares, y—across 
groups; in particular fishery and location partitions. This is straightforward via Aaberge’s 
expression of the overall Lorenz curve in equation (4) across groups as the sum of condi-
tional Lorenz curves on categorical (discrete) covariates for group membership.
 This is to set: 

    ( | )jp Cx                                                         (10) 

as the conditional Lorenz curve when categorical covariates, x, are the group partition, 
Cj, with Cj, the entire data set; i.e., over a particular partitioning into m distinct groups. In 
total, the complete or full lorenz curve can be written as:

1
( ) ( | )

m

j j
j

L p p Cx                                        (11) 

the weighted sum of the group-wise curves. This is merely to express the ordinary, or full, 
Lorenz curve as an iterated expectation over the group-wise or conditional versions. The 
trick is to see the group membership, i.e., categorical ‘covariates,’ as conditional informa-
tion and fix the contribution of each group-wise Lorenz curve, πj, so that the expected 
value is ‘unbiased’ for overall inequality: 

2 FishServe is “the trading name of a privately owned company called Commercial Fisheries Services (CFS). 
CFS is a wholly owned subsidiary of SeaFIC (Seafood Industry Council). FishServe provides administrative 
services to the New Zealand commercial fishing industry to support the 1996 Fisheries Act” (FishServe 2011).
3 Conversion from weight-based allocation to quota shares was accomplished by first double-checking that 
quota was measured in kg, then dividing the allocation measured in kg by QWE (quota weight equivalent).
4 A complete list of these updates is available upon request. 



Conditional Lorenz Curves  311

  ( | ) ( ).E p L px                                                  (12)

This is guaranteed under the following specification: 

set • ,jy
j jy n   the proportional size of group j. 

p•  is the proportion of the population, the ordinary argument for L(p). 
F• n

–1    (p) is the observed pth quantile of overall y. 
F• n,j(F–1(p)) is the observed proportion of population in group j at the pth quantile of 
the overall distribution.
L• (Fn,j(F–1(p))|Cj is the conditional lorenz curve, for group j, on the observed propor-
tion of population in group j at the pth quantile of the overall distribution. 

 Thus the iterated sum of the conditional contributions to overall inequality over each 
group is: 
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The conditional contributions to the overall Lorenz curve can be expressed via the 
straight forward algorithm in table 1. 

This method allows immediate calculation of the overall lorenz curve as the sum of 
condi tional Lorenz curves. The Gini coefficient, as an immediate transformation of the 
Lorenz curve (equation (5), above) can be calculated on the overall curve or on the iter-
ated condi tional Lorenz curves and then ‘averaged’ via group contributions πj. 

Confidence Intervals 

Straightforward tests for statistical significance can be constructed immediately via the 
du ality between the Lorenz curve and the ecdf in equation (4). It is a well-known result 

Table 1
Algorithm for Computing overall lorenz Curve via Conditional Curves on Categorial 

Covariates; i.e., Across Groups

Sort all the data; Generate the pth quantiles of the unconditioned distribution. In the notation: 1. 
Fn,F–1(p).
Sort the data within each group; Generate the ecdf for each group (conditional distribution) at 2. 
the pth quantiles of the original distribution.

 These are: Fn,j(F–1(p)).
3. Join the pth proportions for each group Fn,j with the cumulative proportion of income at each 

group.This is: L(Fn,j(F–1(p))|Cj. 
4. Compute the contribution to the overall Lorenz curve, at each pth proportion:
 1

,( ( ( )) | ).y
j n j jy n L F F p C  
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that the ecdf is unbiased for the cumulative distribution function and converges point-
wise via the central limit theorem (van der Vaart 1998): 

( )[1 ( )]( ) ~ ( ), .F t F t
n nF t N F t                                               (14)

Since the lorenz curve is essentially the ecdf rescaled by n: 

2
( )[1 ( )]( ) ~ ( ), L p L p

n n
L p N L p                                            (15)

convergence to an ‘unbiased’ estimate is on the order of n2. Confidence bounds can then 
be calculated using ordinary Normal approximations. Point-wise boundaries can be calcu-
lated at the observed quantiles using a Normal quantile, Zα/2, for desired confidence 1 – α. 
 Again, the Gini and HHI are scalar quantities from the simplexed ecdf/lorenz space 
to the unit interval. As such, confidence intervals for either are not straightforward be-
cause of the difficulty in calculating the variance/standard error on the constrained space. 
 For the univariate measures bootstrapped confidence bounds can be constructed 
straightaway and should be less conservative than those derived from the overall curve 
(Mills and Zandvakili 1997; Trede 2002). In practice, null, or hypothesized, values of the 
distribution function, F, and lorenz curve, L, may be unavailable. on data of appreciable 
number, bootstrap intervals, point-wise on each of the p quantiles, suffice as estimators 
of standard error for the overall and conditional curves. Essentially the curve and its 
descendants follow a Normal (sampling) distribution with a variance proportional to the 
true value of the curve. Without an explicit null hypothesis about this true value, or some 
elicited prior, we can rely on the bootstrap estimate of variance for a plug-in version of 
the standard error for ordinary Normal confidence limits. 

Significant Effects 

In direct analogy with ordinary linear regression, desired outputs from models for empiri-
cal inequality are the effects of the covariate, x, on the measure of inequality. In this setting 
we have restricted covariates to be categorical groupings, cj, of the data, and we can gener-
ate straightforward estimates of the effect of group membership on overall inequality. 
 In equivalence with the ordinary regression setup, this ‘effect’ should be the change 
in overall inequality given the covariate; i.e., given group membership. Mathematically, 
this would be:
 

1
,

1

( ) [ ( ( ( )) | )]
j j

m
j

j n n j n j
jC C C C

yL p n L F F p C
C C y

                      (16)
  

and involves the Jacobian (or gradient of the transformation) of the probability transform from 
the overall p-tiles, Fn

–1(p), to the conditional ecdfs, Fn,j, an empirical approxi mation of it. 
 but for categorical covariates, x, expressed as groups/partitions, 

1
,m

jj
C   we only 

need to recall the definition of the derivative and that the categorical covariate is ‘singu-
lar’ (i.e., zero when C ≠ Cj and one when C = Cj) this is just: 
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   Ln(p|C–j) – Ln(p|C)                                        (17)

the difference in the estimated lorenz curve calculated on all other groups besides j, 

*

m
j jj j

C C   and the curve calculated on all groups 1
.m

jj
C C  

 Though these curves (p, Ln(p|C–j)) and (p, Ln(p|C)) are not independent, approxi-
mate con fidence limits for significance at 1 – α can be constructed using the sum of the 
variance of each (under a null hypothesis of no difference in inequality for group j) or 
more preferably using the bootstrap point-wise on the observed quantiles (Biewen 2002; 
Efron 1979). For an explicit test of differences in inequality we may assume a priori 
that data across conditional (here fishery, location, time) specifications are equivalently 
unequal and proceed. In this setting, however, we prefer to compute these standard er-
rors via the bootstrap.

Results and Interpretations 

We find strong evidence of market consolidation in the distribution of quota shares, mea-
sured by Gini, HHI, and illustrated by the Lorenz curve, in both pre (1987–1990) and post 
(2007–2009) periods. Generally, though not uniformly, there are significant differences in 
the Ginis and HHIs between the pre and post periods; the measured concentrations on 
data from 2007–2009 are greater, often significantly so. 

 We consider three data partitions
 1

.m
jj

C C  ; i.e., three different conditional and 
overall distributions of the empirical lorenz curve Ln(p) on the data, y, in the presence 
of categorical covariates, x, across several species of fish, locations, and species desig-
nated for export or domestic consumption. In context with equations (16) and (17), we 
construct confidence intervals at α = .05 using the bootstrap. These confidence intervals 
yield ad hoc tests of significant effects for the groupings across fisheries, locations, and 
exports. The curve-wise confidence intervals yield illustrations of the distribution of in-
equality that can be quickly viewed, with significance of difference depicted at each of 
the pth quantiles on the curve. For example, in figure 2 the point-wise confidence bounds 
over the Lorenz curves for the ‘pre’ and ‘post’ intervals are quite narrow.
 Recalling that the Lorenz curve is the share of the good (L(p)) at the proportion of 
the population, p, figure 2 illustrates a significant increase in concentration at the median 
p = .5 over time (between the pre and post periods). The difference in concentration at p 
= .9, however, is not significant. These straightforward and illustrative plots of the curves, 
with point-wise intervals, yield information with useful implications for policymakers. It 
appears that concentration has generally increased—which is apparent from confidence 
intervals on either the Ginis or HHIs—but perhaps less so, or not, for the largest share-
holders (figure 2). 
 Each of these tests via equation (17) is significant for the entire curve. This is 
essentially equivalent to computing the significance of the difference between the condi-
tional and overall Gini (or HHI) indexes. Below we include illustrations of the conditional 
Lorenz curves and overall indexes across fisheries and overall indexes across location and 
export categorization (table 2). 
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Across Fisheries 

Figure 2 illustrates the overall lorenz curves for quota shares in the pre and post periods, 
1987–1990 and 2007–2009, across four important fisheries (table 2). The level of concen-
tration for these fisheries was high (an observed Gini of .75) in the pre interval and higher 
still in the post interval (Gini .883). The plots of the Lorenz curve illustrate reversing 
difference in concentration at the higher quantiles. The observed curves intersect at p = 
.92—the 92

nd 
quantile—suggesting concentration is a bit lower in the post period for the 

larger shareholders. 

Table 2 
Categorical Variables

Variable          Category        description 

location  Inshore Close to shore
 deepwater offshore
 HMS Highly migratory species

Market  Top export Rock lobster, Hoki, Squid,
  orange roughy, Jack mackerel
 Not top export All other species 
  
Fishery  SNA  Snapper
 bCo blue cod 
 ORH Orange roughy 
 CRA Rock lobster 

Figure 2.  Lorenz Curves for Quota Shares, All Fisheries, with Ginis 
Note: Lorenz curves—over all locations—with 95% confidence bars on quota shares for SNA, BCO, ORH, and 
CRA. The solid curve is on data from 1987–1990, the dashed curve on 2007–2009. There is statistically signifi-
cant evidence of an increase in concentration, over time, measured over the entire quota share distribution via 
Lorenz curve and on the Gini index of concentration (included in legend). 
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 Figure 3 illustrates the conditional Lorenz curves across fisheries with the overall 
curve for the pre period, 1987–1990. Snapper and blue cod are more concentrated than 
average, while orange roughy and rock lobster are less concentrated than average. The 
confidence bounds for the conditional curves are negligibly small; each of the curves is 
significantly different from the overall curve via equation (17). Figure 3 also illustrates 
an artifact of computing the conditional curve; the range of quota shares of rock lobster is 
about one-tenth of that for the other fisheries. Since the conditional curve is the observed 
proportion of population in group j at the pth quantile of the overall distribution, the 
illustrated curve appears to be more concentrated than average because it is artificially ex-
trapolated. The contribution to the overall lorenz curve, as it is scaled by the ratio of the 
conditional mean to overall mean, is not affected similarly; the conditional Gini/HHIs are 
accurate, as they are defined on only the observations in the jth covariate grouping. 

 

 

Figure 3.  L(p)’s on Quota Shares, Across Fisheries, with Ginis: 87–90
Note: Lorenz curves—over all locations—with 95% confidence bars on quota shares for SNA, BCO, ORH, and 
CRA. The curves are significantly different at α = .05 across fisheries (Gini coefficient included in legend).

 Figure 4 illustrates the conditional Lorenz curves across fisheries with the overall 
curve for the post period, 2007–2009. Again the confidence bounds for the conditional 
curves are so small as to be negligible; the figure illustrates the bounds for the overall 
curve. The artifact in the rock lobster data is not present. The conditional curve is to the left 
of the overall curve, and the computed concentration via Gini is less than average. Again 
we notice strong evidence of consolidation; the observed Ginis are well above .7, and the 
observed conditional lorenz curves are at the lower right of the panel. Rock lobster is 
much more consolidated than in the ‘pre’ period but still less than overall consolidation.
 There are strong apparent differences in concentration between the Gini and HHI indi-
ces. The Gini coefficients are uniformly increasing, statistically significantly so, over time 
from the ‘pre’ to ‘post’ period. The HHI for orange roughy increases dramatically from 
.16 to nearly .97—a measurement of near total market concentration—but the remaining 
fisheries increase in HHI only slightly and non-significantly. In general, the confidence 
intervals around the HHI estimate will be wider as the HHI, by definition, is restricted to 
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fewer samples. Also, the observed estimates of HHI are lower in magnitude than the Gini 
coefficients on the same data. The large increase in HHI for orange roughy may be a data 
artifact, though the bootstrap confidence interval is not excessively wide (figure 5). 

 

 
Figure 4.  L(p)’s on Quota Shares, Across Fisheries, with Ginis: 07–09

Note: Lorenz curves—over all locations—with 95% confidence bars on quota shares for SNA, BCO, ORH, and 
CRA. The curves are significantly different at α = .05 across fisheries. (Gini coefficient included in legend).

Table 3 
Comparison of Gini and HHI Indices

                                                                Gini                                        HHI 
Variable            Category         ‘87–‘90          ‘07–‘09        Sig       ‘87–‘90  ’07–‘09           Sig?
 
Location Inshore 0.69 (0.007) 0.93 (.001) Y 0.03 (0.02) 0.001 (0.02) N
 Deepwater 0.70 (.009) 0.82 (0.01) Y 0.029 (0.01) 0.12 (0.002) N
 HMS 0.68 (0.025) 0.91 (0.001) Y 0.012 (0.02) 1.0 (0.04) Y

Market  Top Export  0.69 (0.01) 0.91 (0.003) Y 0.002 (0.02) 0.12 (0.02) Y
 Not Top Export 0.75 (.007) 0.93 (0.001) Y 0.003 (0.01) 0.002 (0.02) N

Fishery  SNA  0.81 (0.02) 0.95 (.002) Y 0.006 (0.04) 0.00 (0.05) N
 BCO  0.75 (.006) 0.91 (.004) Y 0.00 (0.001) 0.10 (0.02) Y
 ORH  0.69 (.021) 0.89 (0.003) Y 0.12 (0.002) 0.92 (0.01) Y
 CRA 0.44 (0.001) 0.64 (0.012) Y 0.02 (0.001) 0.12 (0.004) Y
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Across Locations

Figure 6 illustrates significant increases in concentration via Gini over time by classifica-
tion of fishery species as inshore, deepwater, or highly migratory. The concentration in 

 
Figure 5.  by Fishery Type

Note: Left Panel: Gini indices, past and recent—by fishery type—with 95% confidence bars are calculated by boot-
strap. There is statistically significant evidence of an increase in concentration of quota shares. Right Panel: HHI 
indices, past and recent—by fishery type—with 95% confidence bars calculated by bootstrap. The HHI indices gen-
erally have wider confidence intervals. The HHI is defined by a maximum of 50 observations. Notice the difference 
in ranges (y-axis) for Gini and HHI plots. On data with many observations the HHI is often smaller than the Gini. 

 

 

Figure 6. by location
Note: Left Panel: Gini indices, past and recent—by location—with 95% confidence bars are calculated by boot-
strap. There is statistically significant evidence of an increase in concentration of quota shares. Right Panel: HHI 
indices, past and recent—by location—with 95% confidence bars calculated by bootstrap. There is no significant 
increase in measured concentration via HHI for inshore and deepwater fish species. In general, the confidence 
intervals for HHI are wider than the Gini, as they are defined with less data. The observed HHI for Highly Mi-
gratory Species (HMS) is nearly maximal. Notice the difference in ranges (y-axis) for Gini and HHI plots. On 
data with many observations the HHI is often smaller than the Gini.
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the ‘pre’ period via the Gini is strong, though not statistically differentiable across this 
stratifica tion. The observed HHIs, however, appear nearly constant across time, though 
there is a strong and striking increase in measured concentration for the highly migratory 
species. The bootstrap confidence interval, however, is quite wide for this large estimate. 

Across Exports 

Figure 7 suggests a strong, significant increase in concentration for both exported and 
non-exported fisheries via both Gini and HHI. The observed HHIs are lower, however, 
and have wider confidence bands for both ‘pre’ (non-significant) and ‘post’ data. 

 
Figure 7.  Exports vs. Non-Exports

Note: Left Panel: Gini indices, past and recent—by export type—with 95% confidence bars calculated by boot-
strap. There is statistically significant evidence of an increase in concentration of quota shares. Right Panel: HHI 
indices, past and recent—by export type—with 95% confidence bars calculated by bootstrap. Notice the difference 
in ranges (y-axis) for Gini and HHI plots. On data with many observations the HHI is often smaller than the Gini. 

Conclusion 

Appropriately measuring consolidation is an important issue because the literature sug-
gests that it is a precursor for market power and social welfare issues raised by ITQ 
management. In addition, as ITQs are increasingly looked to as a tool for encouraging self-
governance, issues of ITQ allocation become increasingly central to the discussion of how 
fisheries will be governed.  In this article, we use the case of ITQ consolidation in New 
Zealand to illustrate three different methods of measuring consolidation: the Herfindahl 
Hirschman Index (HHI), conditional Gini coefficients, and conditional Lorenz curves. 
 The ecdf unifies the Lorenz curve, the Gini coefficient, and, to a lesser extent, the 
HHI index. All these measures of concentration are essentially sorted lists of the data 
(quantiles) with associated proportions (shares). The explicit formulation of the Lorenz 
curve as a version of the ecdf allows for a conditional specification of the curve as a sum 
over categorical covariates; i.e., stratified groupings. This approach is especially attractive 
because it allows straightforward interpretation and illustration of the ‘effect’ of group 
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membership on overall inequality and yields a more nuanced interpretation with perhaps 
more useful implications. 
 A fortiori, appealing to the ecdf allows explicit consideration of the error in estima-
tion of the Lorenz curve, Gini coefficient, and again, to a lesser extent, the Herfindahl 
index. For large data sets, reasonably narrow confidence intervals can be generated using 
nothing more than bootstrap estimates of variance and the quantiles of the well-known 
Normal distribution. In a sense, the difference between conditionally specified and full 
Lorenz curves can be seen as a version of the Kolmogorov-Smirnov (KS) test for distri-
butional differences, as they both rely upon the convergence of the empirical distribution 
function (Shorack and Wellner 1986; Kolmogorov 1933). An equivalence between this 
test on the Lorenz curve and the ‘scalarization’ onto the univariate Gini/HHI may yield 
more widely applicable methods for measuring (conditional) distributional inequality. 
Two issues not addressed herein are the conditional specification of the Lorenz curve in 
the presence of continuous covariates and the matter of ordering inequality among inter-
secting Lorenz curves. The first topic is still relatively open and reliant upon versions of 
quantile regression (Aaberge, Bjerve, and Doksum 2005)—the second as well—though 
for our purposes here, significant differences calculated on the Ginis from the Lorenz 
curves are appropriate (Aaberge 2004). 
 More careful measures of consolidation of quota (such as we propose) are needed to 
examine the extent to which consolidation is occurring within a fishery. Appropriate mea-
surement of consolidation (such as the Lorenz curve with its conditional specification) 
allows for a more nuanced, intuitive interpretation. This is a key first step to untangling 
the key policy questions raised by ITQs and consolidation.
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